Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1996 Apr;8(4):645–658. doi: 10.1105/tpc.8.4.645

Modification of a Specific Class of Plasmodesmata and Loss of Sucrose Export Ability in the sucrose export defective1 Maize Mutant.

W A Russin 1, R F Evert 1, P J Vanderveer 1, T D Sharkey 1, S P Briggs 1
PMCID: PMC161126  PMID: 12239395

Abstract

We report on the export capability and structural and ultrastructural characteristics of leaves of the sucrose export defective1 (sed1; formerly called sut1) maize mutant. Whole-leaf autoradiography was combined with light and transmission electron microscopy to correlate leaf structure with differences in export capacity in both wild-type and sed1 plants. Tips of sed1 blades had abnormal accumulations of starch and anthocyanin and distorted vascular tissues in the minor veins, and they did not export sucrose. Bases of sed1 blades were structurally identical to those of the wild type and did export sucrose. Electron microscopy revealed that only the plasmodesmata at the bundle sheath-vascular parenchyma cell interface in sed1 minor veins were structurally modified. Aberrant plasmodesmal structure at this critical interface results in a symplastic interruption and a lack of phloem-loading capability. These results clarify the pathway followed by photosynthates, the pivotal role of the plasmodesmata at the bundle sheath-vascular parenchyma cell interface, and the role of the vascular parenchyma cells in phloem loading.

Full Text

The Full Text of this article is available as a PDF (4.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison J. C., Weinmann H. Effect of absence of developing grain on carbohydrate content and senescence of maize leaves. Plant Physiol. 1970 Sep;46(3):435–436. doi: 10.1104/pp.46.3.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ding B., Haudenshield J. S., Hull R. J., Wolf S., Beachy R. N., Lucas W. J. Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell. 1992 Aug;4(8):915–928. doi: 10.1105/tpc.4.8.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ding B., Haudenshield J. S., Willmitzer L., Lucas W. J. Correlation between arrested secondary plasmodesmal development and onset of accelerated leaf senescence in yeast acid invertase transgenic tobacco plants. Plant J. 1993 Jul;4(1):179–189. doi: 10.1046/j.1365-313x.1993.04010179.x. [DOI] [PubMed] [Google Scholar]
  4. Epel B. L. Plasmodesmata: composition, structure and trafficking. Plant Mol Biol. 1994 Dec;26(5):1343–1356. doi: 10.1007/BF00016479. [DOI] [PubMed] [Google Scholar]
  5. Koch K. E., Tsui C. L., Schrader L. E., Nelson O. E. Source-sink relations in maize mutants with starch-deficient endosperms. Plant Physiol. 1982 Jul;70(1):322–325. doi: 10.1104/pp.70.1.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lucas W. J., Bouché-Pillon S., Jackson D. P., Nguyen L., Baker L., Ding B., Hake S. Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science. 1995 Dec 22;270(5244):1980–1983. doi: 10.1126/science.270.5244.1980. [DOI] [PubMed] [Google Scholar]
  7. Madore M. A., Oross J. W., Lucas W. J. Symplastic Transport in Ipomea tricolor Source Leaves : Demonstration of Functional Symplastic Connections from Mesophyll to Minor Veins by a Novel Dye-Tracer Method. Plant Physiol. 1986 Oct;82(2):432–442. doi: 10.1104/pp.82.2.432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Oparka K. J. Signalling via plasmodesmata--the neglected pathway. Semin Cell Biol. 1993 Apr;4(2):131–138. doi: 10.1006/scel.1993.1016. [DOI] [PubMed] [Google Scholar]
  9. Riesmeier J. W., Hirner B., Frommer W. B. Potato sucrose transporter expression in minor veins indicates a role in phloem loading. Plant Cell. 1993 Nov;5(11):1591–1598. doi: 10.1105/tpc.5.11.1591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Riesmeier J. W., Willmitzer L., Frommer W. B. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J. 1992 Dec;11(13):4705–4713. doi: 10.1002/j.1460-2075.1992.tb05575.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  12. Turgeon R., Beebe D. U. The evidence for symplastic Phloem loading. Plant Physiol. 1991 Jun;96(2):349–354. doi: 10.1104/pp.96.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Waigmann E., Zambryski P. Plasmodesmata. Gateways for rapid information transfer. Curr Biol. 1994 Aug 1;4(8):713–716. doi: 10.1016/s0960-9822(00)00157-3. [DOI] [PubMed] [Google Scholar]
  14. Waigmann E., Zambryski P. Tobacco mosaic virus movement protein-mediated protein transport between trichome cells. Plant Cell. 1995 Dec;7(12):2069–2079. doi: 10.1105/tpc.7.12.2069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Weiner H., Burnell J. N., Woodrow I. E., Heldt H. W., Hatch M. D. Metabolite diffusion into bundle sheath cells from c(4) plants: relation to c(4) photosynthesis and plasmodesmatal function. Plant Physiol. 1988 Nov;88(3):815–822. doi: 10.1104/pp.88.3.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wolf S., Deom C. M., Beachy R. N., Lucas W. J. Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science. 1989 Oct 20;246(4928):377–379. doi: 10.1126/science.246.4928.377. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES