Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1996 May;8(5):771–781. doi: 10.1105/tpc.8.5.771

Regulatory Genes Controlling MPG1 Expression and Pathogenicity in the Rice Blast Fungus Magnaporthe grisea.

G Lau 1, J E Hamer 1
PMCID: PMC161136  PMID: 12239399

Abstract

MPG1, a pathogenicity gene of the rice blast fungus Magnaporthe grisea, is expressed during pathogenesis and in axenic culture during nitrogen or glucose limitation. We initiated a search for regulatory mutations that would impair nitrogen metabolism, MPG1 gene expression, and pathogenicity. First, we developed a pair of laboratory strains that were highly fertile and pathogenic toward barley. Using a combinatorial genetic screen, we identified mutants that failed to utilize a wide range of nitrogen sources (e.g., nitrate or amino acids) and then tested the effect of these mutations on pathogenicity. We identified five mutants and designated them Nr- (for nitrogen regulation defective). We show that two of these mutations define two genes, designated NPR1 and NPR2 (for nitrogen pathogenicity regulation), that are essential for pathogenicity and the utilization of many nitrogen sources. These genes are nonallelic to the major nitrogen regulatory gene in M. grisea and are required for expression of the pathogenicity gene MPG1. We propose that NPR1 and NPR2 are major regulators of pathogenicity in M. grisea and may be novel regulators of nitrogen metabolism in fungi.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arst H. N., Jr, Cove D. J. Nitrogen metabolite repression in Aspergillus nidulans. Mol Gen Genet. 1973 Nov 2;126(2):111–141. doi: 10.1007/BF00330988. [DOI] [PubMed] [Google Scholar]
  2. Crawford M. S., Chumley F. G., Weaver C. G., Valent B. Characterization of the Heterokaryotic and Vegetative Diploid Phases of MAGNAPORTHE GRISEA. Genetics. 1986 Dec;114(4):1111–1129. doi: 10.1093/genetics/114.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Crawford N. M., Arst H. N., Jr The molecular genetics of nitrate assimilation in fungi and plants. Annu Rev Genet. 1993;27:115–146. doi: 10.1146/annurev.ge.27.120193.000555. [DOI] [PubMed] [Google Scholar]
  4. Dunn-Coleman N. S., Tomsett A. B., Garrett R. H. The regulation of nitrate assimilation in Neurospora crassa: biochemical analysis of the nmr-1 mutants. Mol Gen Genet. 1981;182(2):234–239. doi: 10.1007/BF00269663. [DOI] [PubMed] [Google Scholar]
  5. Fu Y. H., Marzluf G. A. Characterization of nit-2, the major nitrogen regulatory gene of Neurospora crassa. Mol Cell Biol. 1987 May;7(5):1691–1696. doi: 10.1128/mcb.7.5.1691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hamer J. E., Givan S. Genetic mapping with dispersed repeated sequences in the rice blast fungus: mapping the SMO locus. Mol Gen Genet. 1990 Sep;223(3):487–495. doi: 10.1007/BF00264458. [DOI] [PubMed] [Google Scholar]
  7. Hamer J. E., Valent B., Chumley F. G. Mutations at the smo genetic locus affect the shape of diverse cell types in the rice blast fungus. Genetics. 1989 Jun;122(2):351–361. doi: 10.1093/genetics/122.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mitchell T. K., Dean R. A. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell. 1995 Nov;7(11):1869–1878. doi: 10.1105/tpc.7.11.1869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Schulte R., Bonas U. A Xanthomonas Pathogenicity Locus Is Induced by Sucrose and Sulfur-Containing Amino Acids. Plant Cell. 1992 Jan;4(1):79–86. doi: 10.1105/tpc.4.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Skromne I., Sánchez O., Aguirre J. Starvation stress modulates the expression of the Aspergillus nidulans brlA regulatory gene. Microbiology. 1995 Jan;141(Pt 1):21–28. doi: 10.1099/00221287-141-1-21. [DOI] [PubMed] [Google Scholar]
  11. Talbot N. J., Ebbole D. J., Hamer J. E. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell. 1993 Nov;5(11):1575–1590. doi: 10.1105/tpc.5.11.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Talbot N. J. Having a blast: exploring the pathogenicity of Magnaporthe grisea. Trends Microbiol. 1995 Jan;3(1):9–16. doi: 10.1016/s0966-842x(00)88862-9. [DOI] [PubMed] [Google Scholar]
  13. Valent B., Farrall L., Chumley F. G. Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Genetics. 1991 Jan;127(1):87–101. doi: 10.1093/genetics/127.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Van den Ackerveken G. F., Dunn R. M., Cozijnsen A. J., Vossen J. P., Van den Broek H. W., De Wit P. J. Nitrogen limitation induces expression of the avirulence gene avr9 in the tomato pathogen Cladosporium fulvum. Mol Gen Genet. 1994 May 10;243(3):277–285. doi: 10.1007/BF00301063. [DOI] [PubMed] [Google Scholar]
  15. Van den Ackerveken G. F., Van Kan J. A., Joosten M. H., Muisers J. M., Verbakel H. M., De Wit P. J. Characterization of two putative pathogenicity genes of the fungal tomato pathogen Cladosporium fulvum. Mol Plant Microbe Interact. 1993 Mar-Apr;6(2):210–215. doi: 10.1094/mpmi-6-210. [DOI] [PubMed] [Google Scholar]
  16. Wei Z. M., Sneath B. J., Beer S. V. Expression of Erwinia amylovora hrp genes in response to environmental stimuli. J Bacteriol. 1992 Mar;174(6):1875–1882. doi: 10.1128/jb.174.6.1875-1882.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES