Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1996 May;8(5):859–871. doi: 10.1105/tpc.8.5.859

Two Small Spatially Distinct Regions of Phytochrome B Are Required for Efficient Signaling Rates.

D Wagner 1, M Koloszvari 1, P H Quail 1
PMCID: PMC161144  PMID: 12239404

Abstract

We used a series of in vitro-generated deletion and amino acid substitution derivatives of phytochrome B (phyB) expressed in transgenic Arabidopsis to identify regions of the molecule important for biological activity. Expression of the chromophore-bearing N-terminal domain of phyB alone resulted in a fully photoactive, monomeric molecule lacking normal regulatory activity. Expression of the C-terminal domain alone resulted in a photoinactive, dimeric molecule, also lacking normal activity. Thus, both domains are necessary, but neither is sufficient for phyB activity. Deletion of a small region on each major domain (residues 6 to 57 and 652 to 712, respectively) was shown to compromise phyB activity differentially without interfering with spectral activity or dimerization. Deletion of residues 6 to 57 caused a large increase in the fluence rate of continuous red light (Rc) required for maximal seedling responsiveness, indicating a marked decrease in efficiency of light signal perception or processing per mole of mutant phyB. In contrast, deletion of residues 652 to 712 resulted in a photoreceptor that retained saturation of seedling responsiveness to Rc at low fluence rates but at a response level much below the maximal response elicited by the parent molecule. This deletion apparently reduces the maximal biological activity per mole of phyB without a major decrease in efficiency of signal perception, thus suggesting disruption of a process downstream of signal perception. In addition, certain phyB constructs caused dominant negative interference with endogenous phyA activity in continuous far-red light, suggesting that the two photoreceptors may share reaction partners.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boylan M. T., Quail P. H. Oat Phytochrome Is Biologically Active in Transgenic Tomatoes. Plant Cell. 1989 Aug;1(8):765–773. doi: 10.1105/tpc.1.8.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boylan M. T., Quail P. H. Phytochrome a overexpression inhibits hypocotyl elongation in transgenic Arabidopsis. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10806–10810. doi: 10.1073/pnas.88.23.10806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boylan M., Douglas N., Quail P. H. Dominant negative suppression of arabidopsis photoresponses by mutant phytochrome A sequences identifies spatially discrete regulatory domains in the photoreceptor. Plant Cell. 1994 Mar;6(3):449–460. doi: 10.1105/tpc.6.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cherry J. R., Hershey H. P., Vierstra R. D. Characterization of Tobacco Expressing Functional Oat Phytochrome : Domains Responsible for the Rapid Degradation of Pfr Are Conserved between Monocots and Dicots. Plant Physiol. 1991 Jul;96(3):775–785. doi: 10.1104/pp.96.3.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cherry J. R., Hondred D., Walker J. M., Keller J. M., Hershey H. P., Vierstra R. D. Carboxy-terminal deletion analysis of oat phytochrome A reveals the presence of separate domains required for structure and biological activity. Plant Cell. 1993 May;5(5):565–575. doi: 10.1105/tpc.5.5.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cherry J. R., Hondred D., Walker J. M., Vierstra R. D. Phytochrome requires the 6-kDa N-terminal domain for full biological activity. Proc Natl Acad Sci U S A. 1992 Jun 1;89(11):5039–5043. doi: 10.1073/pnas.89.11.5039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dehesh K., Franci C., Parks B. M., Seeley K. A., Short T. W., Tepperman J. M., Quail P. H. Arabidopsis HY8 locus encodes phytochrome A. Plant Cell. 1993 Sep;5(9):1081–1088. doi: 10.1105/tpc.5.9.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dehesh K., Tepperman J., Christensen A. H., Quail P. H. phyB is evolutionarily conserved and constitutively expressed in rice seedling shoots. Mol Gen Genet. 1991 Feb;225(2):305–313. doi: 10.1007/BF00269863. [DOI] [PubMed] [Google Scholar]
  9. Edgerton M. D., Jones A. M. Localization of protein-protein interactions between subunits of phytochrome. Plant Cell. 1992 Feb;4(2):161–171. doi: 10.1105/tpc.4.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Herskowitz I. Functional inactivation of genes by dominant negative mutations. Nature. 1987 Sep 17;329(6136):219–222. doi: 10.1038/329219a0. [DOI] [PubMed] [Google Scholar]
  11. Jones A. M., Allen C. D., Gardner G., Quail P. H. Synthesis of phytochrome apoprotein and chromophore are not coupled obligatorily. Plant Physiol. 1986 Aug;81(4):1014–1016. doi: 10.1104/pp.81.4.1014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jones A. M., Edgerton M. D. The anatomy of phytochrome, a unique photoreceptor in plants. Semin Cell Biol. 1994 Oct;5(5):295–302. doi: 10.1006/scel.1994.1036. [DOI] [PubMed] [Google Scholar]
  13. Kay S. A., Nagatani A., Keith B., Deak M., Furuya M., Chua N. H. Rice Phytochrome Is Biologically Active in Transgenic Tobacco. Plant Cell. 1989 Aug;1(8):775–782. doi: 10.1105/tpc.1.8.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Keller J. M., Shanklin J., Vierstra R. D., Hershey H. P. Expression of a functional monocotyledonous phytochrome in transgenic tobacco. EMBO J. 1989 Apr;8(4):1005–1012. doi: 10.1002/j.1460-2075.1989.tb03467.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lagarias J. C., Mercurio F. M. Structure function studies on phytochrome. Identification of light-induced conformational changes in 124-kDa Avena phytochrome in vitro. J Biol Chem. 1985 Feb 25;260(4):2415–2423. [PubMed] [Google Scholar]
  17. Nagatani A., Reed J. W., Chory J. Isolation and Initial Characterization of Arabidopsis Mutants That Are Deficient in Phytochrome A. Plant Physiol. 1993 May;102(1):269–277. doi: 10.1104/pp.102.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Parks B. M., Quail P. H. hy8, a new class of arabidopsis long hypocotyl mutants deficient in functional phytochrome A. Plant Cell. 1993 Jan;5(1):39–48. doi: 10.1105/tpc.5.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Quail P. H., Boylan M. T., Parks B. M., Short T. W., Xu Y., Wagner D. Phytochromes: photosensory perception and signal transduction. Science. 1995 May 5;268(5211):675–680. doi: 10.1126/science.7732376. [DOI] [PubMed] [Google Scholar]
  20. Quail P. H. Phytochrome: a light-activated molecular switch that regulates plant gene expression. Annu Rev Genet. 1991;25:389–409. doi: 10.1146/annurev.ge.25.120191.002133. [DOI] [PubMed] [Google Scholar]
  21. Rebay I., Fehon R. G., Artavanis-Tsakonas S. Specific truncations of Drosophila Notch define dominant activated and dominant negative forms of the receptor. Cell. 1993 Jul 30;74(2):319–329. doi: 10.1016/0092-8674(93)90423-n. [DOI] [PubMed] [Google Scholar]
  22. Reed J. W., Nagpal P., Poole D. S., Furuya M., Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell. 1993 Feb;5(2):147–157. doi: 10.1105/tpc.5.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Somers D. E., Sharrock R. A., Tepperman J. M., Quail P. H. The hy3 Long Hypocotyl Mutant of Arabidopsis Is Deficient in Phytochrome B. Plant Cell. 1991 Dec;3(12):1263–1274. doi: 10.1105/tpc.3.12.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stockhaus J., Nagatani A., Halfter U., Kay S., Furuya M., Chua N. H. Serine-to-alanine substitutions at the amino-terminal region of phytochrome A result in an increase in biological activity. Genes Dev. 1992 Dec;6(12A):2364–2372. doi: 10.1101/gad.6.12a.2364. [DOI] [PubMed] [Google Scholar]
  25. Struhl G., Fitzgerald K., Greenwald I. Intrinsic activity of the Lin-12 and Notch intracellular domains in vivo. Cell. 1993 Jul 30;74(2):331–345. doi: 10.1016/0092-8674(93)90424-o. [DOI] [PubMed] [Google Scholar]
  26. Vierstra R. D., Quail P. H., Hahn T. R., Song P. S. Comparison of the protein conformations between different forms (Pr and Pfr) of native (124 kDa) and degraded (118/114 kDa) phytochromes from Avena sativa. Photochem Photobiol. 1987 Mar;45(3):429–432. doi: 10.1111/j.1751-1097.1987.tb05398.x. [DOI] [PubMed] [Google Scholar]
  27. Wagner D., Quail P. H. Mutational analysis of phytochrome B identifies a small COOH-terminal-domain region critical for regulatory activity. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8596–8600. doi: 10.1073/pnas.92.19.8596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wagner D., Tepperman J. M., Quail P. H. Overexpression of Phytochrome B Induces a Short Hypocotyl Phenotype in Transgenic Arabidopsis. Plant Cell. 1991 Dec;3(12):1275–1288. doi: 10.1105/tpc.3.12.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Whitelam G. C., Johnson E., Peng J., Carol P., Anderson M. L., Cowl J. S., Harberd N. P. Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell. 1993 Jul;5(7):757–768. doi: 10.1105/tpc.5.7.757. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES