Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1996 May;8(5):929–938. doi: 10.1105/tpc.8.5.929

A High-Affinity Binding Site for the AVR9 Peptide Elicitor of Cladosporium fulvum Is Present on Plasma Membranes of Tomato and Other Solanaceous Plants.

M Kooman-Gersmann 1, G Honee 1, G Bonnema 1, PJGM De Wit 1
PMCID: PMC161149  PMID: 12239406

Abstract

The race-specific Cladosporium fulvum peptide elicitor AVR9, which specifically induces a hypersensitive response in tomato genotypes carrying the Cf-9 resistance gene, was labeled with iodine-125 at the N-terminal tyrosine residue and used in binding studies. 125I-AVR9 showed specific, saturable, and reversible binding to plasma membranes isolated from leaves of tomato cultivar Moneymaker without Cf resistance genes (MM-Cf0) or from a near-isogenic genotype with the Cf-9 resistance gene (MM-Cf9). The dissociation constant was found to be 0.07 nM, and the receptor concentration was 0.8 pmol/mg microsomal protein. Binding was highly influenced by pH and the ionic strength of the binding buffer and by temperature, indicating the involvement of both electrostatic and hydrophobic interactions. Binding kinetics and binding capacity were similar for membranes of the MM-Cf0 and MM-Cf9 genotypes. In all solanaceous plant species tested, an AVR9 binding site was present, whereas in the nonsolanaceous species that were analyzed, such a binding site could not be identified. The ability of membranes isolated from different solanaceous plant species to bind AVR9 seems to correlate with the presence of members of the Cf-9 gene family, but whether this correlation is functional remains to be determined.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Basel L. E., Zukowski A. T., Cleland R. E. Modulation of Fusicoccin-Binding Protein Activity in Mung Bean (Vigna radiata L.) Hypocotyls by Tissue Maturation and by Fusicoccin. Plant Physiol. 1994 Feb;104(2):691–697. doi: 10.1104/pp.104.2.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baureithel K., Felix G., Boller T. Specific, high affinity binding of chitin fragments to tomato cells and membranes. Competitive inhibition of binding by derivatives of chitooligosaccharides and a Nod factor of Rhizobium. J Biol Chem. 1994 Jul 8;269(27):17931–17938. [PubMed] [Google Scholar]
  3. Chang J. Y., Canals F., Schindler P., Querol E., Avilés F. X. The disulfide folding pathway of potato carboxypeptidase inhibitor. J Biol Chem. 1994 Sep 2;269(35):22087–22094. [PubMed] [Google Scholar]
  4. Cheong J. J., Hahn M. G. A specific, high-affinity binding site for the hepta-beta-glucoside elicitor exists in soybean membranes. Plant Cell. 1991 Feb;3(2):137–147. doi: 10.1105/tpc.3.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hofsteenge J. 'Holy' proteins. I: Ribonuclease inhibitor. Curr Opin Struct Biol. 1994 Dec;4(6):807–809. doi: 10.1016/0959-440x(94)90260-7. [DOI] [PubMed] [Google Scholar]
  6. Isaacs N. W. Cystine knots. Curr Opin Struct Biol. 1995 Jun;5(3):391–395. doi: 10.1016/0959-440x(95)80102-2. [DOI] [PubMed] [Google Scholar]
  7. Joosten M. H., Cozijnsen T. J., De Wit P. J. Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature. 1994 Jan 27;367(6461):384–386. doi: 10.1038/367384a0. [DOI] [PubMed] [Google Scholar]
  8. Kobe B., Deisenhofer J. The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci. 1994 Oct;19(10):415–421. doi: 10.1016/0968-0004(94)90090-6. [DOI] [PubMed] [Google Scholar]
  9. Nasrallah J. B., Stein J. C., Kandasamy M. K., Nasrallah M. E. Signaling the arrest of pollen tube development in self-incompatible plants. Science. 1994 Dec 2;266(5190):1505–1508. doi: 10.1126/science.266.5190.1505. [DOI] [PubMed] [Google Scholar]
  10. Navarre D. A., Wolpert T. J. Inhibition of the glycine decarboxylase multienzyme complex by the host-selective toxin victorin. Plant Cell. 1995 Apr;7(4):463–471. doi: 10.1105/tpc.7.4.463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nürnberger T., Nennstiel D., Jabs T., Sacks W. R., Hahlbrock K., Scheel D. High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell. 1994 Aug 12;78(3):449–460. doi: 10.1016/0092-8674(94)90423-5. [DOI] [PubMed] [Google Scholar]
  12. REISFELD R. A., LEWIS U. J., WILLIAMS D. E. Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature. 1962 Jul 21;195:281–283. doi: 10.1038/195281a0. [DOI] [PubMed] [Google Scholar]
  13. Sandstrom R. P., Deboer A. H., Lomax T. L., Cleland R. E. Latency of Plasma Membrane H-ATPase in Vesicles Isolated by Aqueous Phase Partitioning : Increased substrate Accessibility or Enzyme Activation. Plant Physiol. 1987 Nov;85(3):693–698. doi: 10.1104/pp.85.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Segarini P. R., Roberts A. B., Rosen D. M., Seyedin S. M. Membrane binding characteristics of two forms of transforming growth factor-beta. J Biol Chem. 1987 Oct 25;262(30):14655–14662. [PubMed] [Google Scholar]
  15. de Boer A. H., Watson B. A., Cleland R. E. Purification and identification of the fusicoccin binding protein from oat root plasma membrane. Plant Physiol. 1989;89:250–259. doi: 10.1104/pp.89.1.250. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES