Abstract
The unicellular green alga Chlorella kessleri can induce monosaccharide-H+ symport catalyzing the energy-dependent transport of D-glucose (D-Glc) and several other pentoses and hexoses across the plasmalemma. The gene coding for the inducible HUP1 monosaccharide-H+ symporter has been cloned and the protein has been characterized previously. The data presented in this paper demonstrate that the presence of the HUP1 gene product alone is not sufficient to cover the broad substrate specificity of monosaccharide transport in induced Chlorella cells. Two other HUP genes are shown to be co-induced in Chlorella in response to D-Glc in the medium. The cloning of HUP2 and HUP3 cDNA and genomic sequences is described, both being very homologous to HUP1. Modification of the 5' untranslated sequences of full-length cDNA clones of HUP2 and HUP3 allowed the functional expression of both transporters in Schizosaccharomyces pombe. HUP2 was shown to be a galactose-H+ symporter, whereas the substrate specificity of the HUP3 gene product is very similar to that of the HUP1 protein. However, HUP3 does not seem to be induced to high levels in Glc-treated Chlorella cells. Results are also presented proving that the product of the HUP1 gene is localized in the plasmalemma of D-Glc-induced Chlorella cells and is absent in plasma membranes of noninduced cells. Incubation of thin sections of Chlorella cells with anti-HUP1 antibodies and a fluorescence-labeled, second antibody yielded a ring of fluorescence on the surface of Glc-induced Chlorella cells.
Full Text
The Full Text of this article is available as a PDF (2.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bisson L. F., Coons D. M., Kruckeberg A. L., Lewis D. A. Yeast sugar transporters. Crit Rev Biochem Mol Biol. 1993;28(4):259–308. doi: 10.3109/10409239309078437. [DOI] [PubMed] [Google Scholar]
- Boorer K. J., Forde B. G., Leigh R. A., Miller A. J. Functional expression of a plant plasma membrane transporter in Xenopus oocytes. FEBS Lett. 1992 May 11;302(2):166–168. doi: 10.1016/0014-5793(92)80431-f. [DOI] [PubMed] [Google Scholar]
- Caspari T., Stadler R., Sauer N., Tanner W. Structure/function relationship of the Chlorella glucose/H+ symporter. J Biol Chem. 1994 Feb 4;269(5):3498–3502. [PubMed] [Google Scholar]
- Dunn S. D. Effects of the modification of transfer buffer composition and the renaturation of proteins in gels on the recognition of proteins on Western blots by monoclonal antibodies. Anal Biochem. 1986 Aug 15;157(1):144–153. doi: 10.1016/0003-2697(86)90207-1. [DOI] [PubMed] [Google Scholar]
- Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
- Henderson P. J., Giddens R. A., Jones-Mortimer M. C. Transport of galactose, glucose and their molecular analogues by Escherichia coli K12. Biochem J. 1977 Feb 15;162(2):309–320. doi: 10.1042/bj1620309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Komor E., Tanner W. The determination of the membrane ptoential of Chlorella vulgaris. Evidence for electrogenic sugar transport. Eur J Biochem. 1976 Nov 1;70(1):197–204. doi: 10.1111/j.1432-1033.1976.tb10970.x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Marger M. D., Saier M. H., Jr A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends Biochem Sci. 1993 Jan;18(1):13–20. doi: 10.1016/0968-0004(93)90081-w. [DOI] [PubMed] [Google Scholar]
- Milbradt B., Höfer M. Glucose-transport-deficient mutants of Schizosaccharomyces pombe: phenotype, genetics and use for genetic complementation. Microbiology. 1994 Oct;140(Pt 10):2617–2623. doi: 10.1099/00221287-140-10-2617. [DOI] [PubMed] [Google Scholar]
- Russell P., Nurse P. cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell. 1986 Apr 11;45(1):145–153. doi: 10.1016/0092-8674(86)90546-5. [DOI] [PubMed] [Google Scholar]
- Sauer N., Caspari T., Klebl F., Tanner W. Functional expression of the Chlorella hexose transporter in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7949–7952. doi: 10.1073/pnas.87.20.7949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sauer N., Tanner W. The hexose carrier from Chlorella. cDNA cloning of a eucaryotic H+-cotransporter. FEBS Lett. 1989 Dec 18;259(1):43–46. doi: 10.1016/0014-5793(89)81489-9. [DOI] [PubMed] [Google Scholar]
- Schwab W. G., Komor E. A possible mechanistic role of the membrane potential in proton-sugar cotransport of Chlorella. FEBS Lett. 1978 Mar 1;87(1):157–160. doi: 10.1016/0014-5793(78)80156-2. [DOI] [PubMed] [Google Scholar]
- Stolz J., Stadler R., Opekarová M., Sauer N. Functional reconstitution of the solubilized Arabidopsis thaliana STP1 monosaccharide-H+ symporter in lipid vesicles and purification of the histidine tagged protein from transgenic Saccharomyces cerevisiae. Plant J. 1994 Aug;6(2):225–233. doi: 10.1046/j.1365-313x.1994.6020225.x. [DOI] [PubMed] [Google Scholar]
- Tanner W. Light-driven active uptake of 3-O-methylglucose via an inducible hexose uptake system of Chlorella. Biochem Biophys Res Commun. 1969 Jul 23;36(2):278–283. doi: 10.1016/0006-291x(69)90326-x. [DOI] [PubMed] [Google Scholar]
- Wolf K., Tanner W., Sauer N. The Chlorella H+/hexose cotransporter gene. Curr Genet. 1991 Mar;19(3):215–219. doi: 10.1007/BF00336489. [DOI] [PubMed] [Google Scholar]