Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jan;107(1):43–52. doi: 10.1104/pp.107.1.43

L-O-Methylthreonine-Resistant Mutant of Arabidopsis Defective in Isoleucine Feedback Regulation.

G Mourad 1, J King 1
PMCID: PMC161166  PMID: 12228340

Abstract

Threonine dehydratase/deaminase (TD), the first enzyme in the isoleucine biosynthetic pathway, is feedback inhibited by isoleucine. By screening M2 populations of ethyl methane sulfonate-treated Arabidopsis thaliana Columbia wild-type seeds, we isolated five independent mutants that were resistant to L-O-methylthreonine, an isoleucine structural analog. Growth in the mutants was 50- to 600-fold more resistant to L-O-methylthreonine than in the wild type. The resistance was due to a single, dominant nuclear gene that was denoted omr1 and was mapped to chromosome 3 in GM11b, the mutant line exhibiting the highest level of resistance. Biochemical characteristics (specific activities, Km, Vmax, and pH optimum) of TD in extracts from the wild type and GM11b were similar except for the inhibition constant of isoleucine, which was 50-fold higher in GM11b than in the wild type. Levels of free isoleucine were 20-fold higher in extracts from GM11b than in extracts from wild type. Therefore, isoleucine feedback insensitivity in GM11b is due to a mutant form of the TD enzyme encoded by omr1. The mutant allele omr1 of the line GM11b could provide a new selectable marker for plant genetic transformation.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Betz J. L., Hereford L. M., Magee P. T. Threonine deaminases from Saccharomyces cerevisiae mutationally altered in regulatory properties. Biochemistry. 1971 May 11;10(10):1818–1824. doi: 10.1021/bi00786a014. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Brunner A., Devillers-Mire A., Robichon-Szulmajster H. Regulation of isoleucine-valine biosynthesis in Saccharomyces cerevisiae. Altered threonine deaminase in an is-1 mutant responding to threonine. Eur J Biochem. 1969 Aug;10(1):172–183. [PubMed] [Google Scholar]
  4. Frankard V., Ghislain M., Jacobs M. Two Feedback-Insensitive Enzymes of the Aspartate Pathway in Nicotiana sylvestris. Plant Physiol. 1992 Aug;99(4):1285–1293. doi: 10.1104/pp.99.4.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Giovanelli J., Mudd S. H., Datko A. H. In Vivo Regulation of Threonine and Isoleucine Biosynthesis in Lemna paucicostata Hegelm. 6746. Plant Physiol. 1988 Feb;86(2):369–377. doi: 10.1104/pp.86.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hibberd K. A., Green C. E. Inheritance and expression of lysine plus threonine resistance selected in maize tissue culture. Proc Natl Acad Sci U S A. 1982 Jan;79(2):559–563. doi: 10.1073/pnas.79.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mourad G., Haughn G., King J. Intragenic recombination in the CSR1 locus of Arabidopsis. Mol Gen Genet. 1994 Apr;243(2):178–184. doi: 10.1007/BF00280315. [DOI] [PubMed] [Google Scholar]
  8. RAMAKRISHNAN T., ADELBERG E. A. REGULATORY MECHANISMS IN THE BIOSYNTHESIS OF ISOLEUCINE AND VALINE. I. GENETIC DEREPRESSION OF ENZYME FORMATION. J Bacteriol. 1964 Mar;87:566–573. doi: 10.1128/jb.87.3.566-573.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Robichon-Szulmajster H., Magee P. T. The regulation of isoleucine-valine biosynthesis in Saccharomyces cerevisiae. I. Threonine deaminase. Eur J Biochem. 1968 Feb;3(4):492–501. doi: 10.1111/j.1432-1033.1967.tb19558.x. [DOI] [PubMed] [Google Scholar]
  10. Sharma R. J., Mazumder R. Purification, properties, and feedback control of L-threonine dehydratase from spinach. J Biol Chem. 1970 Jun 10;245(11):3008–3014. [PubMed] [Google Scholar]
  11. Whiteley H. R., Tahara M. Threonine deaminase of Clostridium tetanomorphum. I. Purification and properties. J Biol Chem. 1966 Nov 10;241(21):4881–4889. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES