Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jan;107(1):111–123. doi: 10.1104/pp.107.1.111

[beta]-Glucan Synthesis in the Cotton Fiber (IV. In Vitro Assembly of the Cellulose I Allomorph).

K Kudlicka 1, R M Brown Jr 1, L Li 1, J H Lee 1, H Shin 1, S Kuga 1
PMCID: PMC161173  PMID: 12228346

Abstract

In vitro assembly of cellulose from plasma membrane extracts of the cotton (Gossypium hirsutum) fiber was enriched by a combination of 3-(N-morpholino)propanesulfonic acid extraction buffer and two independent digitonin solubilization steps consisting of 0.05% digitonin (SE1) followed by 1% digitonin (SE2). Glucan synthase activity assays revealed that, although the SE2 fraction possessed higher activity, only 8.6% of the in vitro product survived acetic/nitric acid treatment. On the other hand, the SE1 fraction was less active, but 32.1% of the total glucan in vitro product was resistant to acetic/nitric acid. In vitro products synthesized from the SE1 fraction contained [beta]-1,3-glucan and fibrillar cellulose I, whereas the SE2 fraction produced [beta]-1,3-glucan and cellulose II. Both celluloses assembled in vitro were labeled with cellobiohydrolase I-gold complex, and the electron diffraction patterns of both products from SE1 and SE2 revealed cellulose I and cellulose II, respectively. Contamination of native cellulose was ruled out by extensive evidence from autoradiography of the ethanol-insoluble and acetic/nitric acid-insoluble materials, including three different controls.

Full Text

The Full Text of this article is available as a PDF (5.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aloni Y., Cohen R., Benziman M., Delmer D. Solubilization of the UDP-glucose:1,4-beta-D-glucan 4-beta-D-glucosyltransferase (cellulose synthase) from Acetobacter xylinum. A comparison of regulatory properties with those of the membrane-bound form of the enzyme. J Biol Chem. 1983 Apr 10;258(7):4419–4423. [PubMed] [Google Scholar]
  2. Bureau T. E., Brown R. M. In vitro synthesis of cellulose II from a cytoplasmic membrane fraction of Acetobacter xylinum. Proc Natl Acad Sci U S A. 1987 Oct;84(20):6985–6989. doi: 10.1073/pnas.84.20.6985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Delmer D. P., Ohana P., Gonen L., Benziman M. In Vitro Synthesis of Cellulose in Plants: Still a Long Way to Go! Plant Physiol. 1993 Oct;103(2):307–308. doi: 10.1104/pp.103.2.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dhugga K. S., Ray P. M. A 55 kDa plasma membrane-associated polypeptide is involved in beta-1,3-glucan synthase activity in pea tissue. FEBS Lett. 1991 Jan 28;278(2):283–286. doi: 10.1016/0014-5793(91)80136-q. [DOI] [PubMed] [Google Scholar]
  5. Li L., Brown R. M., Jr [beta]-Glucan Synthesis in the Cotton Fiber (II. Regulation and Kinetic Properties of [beta]-Glucan Synthases. Plant Physiol. 1993 Apr;101(4):1143–1148. doi: 10.1104/pp.101.4.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lin F. C., Brown R. M., Jr, Cooper J. B., Delmer D. P. Synthesis of Fibrils in Vitro by a Solubilized Cellulose Synthase from Acetobacter xylinum. Science. 1985 Nov 15;230(4727):822–825. doi: 10.1126/science.230.4727.822. [DOI] [PubMed] [Google Scholar]
  7. Lin F. C., Brown R. M., Jr, Drake R. R., Jr, Haley B. E. Identification of the uridine 5'-diphosphoglucose (UDP-Glc) binding subunit of cellulose synthase in Acetobacter xylinum using the photoaffinity probe 5-azido-UDP-Glc. J Biol Chem. 1990 Mar 25;265(9):4782–4784. [PubMed] [Google Scholar]
  8. Mayer R., Ross P., Weinhouse H., Amikam D., Volman G., Ohana P., Calhoon R. D., Wong H. C., Emerick A. W., Benziman M. Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants. Proc Natl Acad Sci U S A. 1991 Jun 15;88(12):5472–5476. doi: 10.1073/pnas.88.12.5472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Porzio M. A., Pearson A. M. Improved resolution of myofibrillar proteins with sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Biochim Biophys Acta. 1977 Jan 25;490(1):27–34. doi: 10.1016/0005-2795(77)90102-7. [DOI] [PubMed] [Google Scholar]
  10. Saxena I. M., Kudlicka K., Okuda K., Brown R. M., Jr Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J Bacteriol. 1994 Sep;176(18):5735–5752. doi: 10.1128/jb.176.18.5735-5752.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Saxena I. M., Lin F. C., Brown R. M., Jr Cloning and sequencing of the cellulose synthase catalytic subunit gene of Acetobacter xylinum. Plant Mol Biol. 1990 Nov;15(5):673–683. doi: 10.1007/BF00016118. [DOI] [PubMed] [Google Scholar]
  12. Saxena I. M., Lin F. C., Brown R. M., Jr Identification of a new gene in an operon for cellulose biosynthesis in Acetobacter xylinum. Plant Mol Biol. 1991 Jun;16(6):947–954. doi: 10.1007/BF00016067. [DOI] [PubMed] [Google Scholar]
  13. Wasserman B. P., Wu A., Harriman R. W. Probing the molecular architecture of (1,3)-beta-glucan (callose) synthase: polypeptide depletion studies. Biochem Soc Trans. 1992 Feb;20(1):18–22. doi: 10.1042/bst0200018. [DOI] [PubMed] [Google Scholar]
  14. Wong H. C., Fear A. L., Calhoon R. D., Eichinger G. H., Mayer R., Amikam D., Benziman M., Gelfand D. H., Meade J. H., Emerick A. W. Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc Natl Acad Sci U S A. 1990 Oct;87(20):8130–8134. doi: 10.1073/pnas.87.20.8130. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES