Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jan;107(1):131–140. doi: 10.1104/pp.107.1.131

Phytochrome, Gibberellins, and Hypocotyl Growth (A Study Using the Cucumber (Cucumis sativus L.) long hypocotyl Mutant).

E Lopez-Juez 1, M Kobayashi 1, A Sakurai 1, Y Kamiya 1, R E Kendrick 1
PMCID: PMC161175  PMID: 12228348

Abstract

The possible involvement of gibberellins (GAs) in the regulation of hypocotyl elongation by phytochrome was examined. Under white light the tall long hypocotyl (lh) cucumber (Cucumis sativus L.) mutant, deficient in a type B-like phytochrome, shows an increased "responsiveness" (defined as response capability) to applied GA4 (the main endogenous active GA) compared to the wild type. Supplementing far-red irradiation results in a similar increase in responsiveness in the wild type. Experiments involving application of the precursor GA9 and of an inhibitor of GA4 inactivation suggest that both the GA4 activation and inactivation steps are phytochrome independent. Endogenous GA levels of whole seedlings were analyzed by combined gas chromatography-mass spectrometry using deuterated internal standards. The levels of GA4 (and those of GA34, the inactivated GA4) were lower in the lh mutant under low-irradiance fluorescent light compared with the wild type, similar to wild type under higher irradiance light during the initial hypocotyl extension phase, and higher during the phase of sustained growth, in which extension involved an increase in the number of cells in the upper region. In all cases, growth of the lh mutant was more rapid than that of the wild type. It is proposed that GA4 and phytochrome control cell elongation primarily through separate mechanisms that interact at a step close to the terminal response.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamse P., Jaspers P. A., Bakker J. A., Kendrick R. E., Koornneef M. Photophysiology and phytochrome content of long-hypocotyl mutant and wild-type cucumber seedlings. Plant Physiol. 1988 May;87(1):264–268. doi: 10.1104/pp.87.1.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ballaré C. L., Scopel A. L., Sánchez R. A. Far-red radiation reflected from adjacent leaves: an early signal of competition in plant canopies. Science. 1990 Jan 19;247(4940):329–332. doi: 10.1126/science.247.4940.329. [DOI] [PubMed] [Google Scholar]
  3. Behringer F. J., Davies P. J., Reid J. B. Genetic analysis of the role of gibberellin in the red light inhibition of stem elongation in etiolated seedlings. Plant Physiol. 1990 Oct;94(2):432–439. doi: 10.1104/pp.94.2.432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Campell B. R., Bonner B. A. Evidence for Phytochrome Regulation of Gibberellin A(20) 3beta-Hydroxylation in Shoots of Dwarf (lele) Pisum sativum L. Plant Physiol. 1986 Dec;82(4):909–915. doi: 10.1104/pp.82.4.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Childs K. L., Cordonnier-Pratt M. M., Pratt L. H., Morgan P. W. Genetic Regulation of Development in Sorghum bicolor: VII. ma(3) Flowering Mutant Lacks a Phytochrome that Predominates in Green Tissue. Plant Physiol. 1992 Jun;99(2):765–770. doi: 10.1104/pp.99.2.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Devlin P. F., Rood S. B., Somers D. E., Quail P. H., Whitelam G. C. Photophysiology of the Elongated Internode (ein) Mutant of Brassica rapa: ein Mutant Lacks a Detectable Phytochrome B-Like Polypeptide. Plant Physiol. 1992 Nov;100(3):1442–1447. doi: 10.1104/pp.100.3.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fujioka S., Yamane H., Spray C. R., Phinney B. O., Gaskin P., Macmillan J., Takahashi N. Gibberellin A(3) Is Biosynthesized from Gibberellin A(20) via Gibberellin A(5) in Shoots of Zea mays L. Plant Physiol. 1990 Sep;94(1):127–131. doi: 10.1104/pp.94.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kigel J., Cosgrove D. J. Photoinhibition of stem elongation by blue and red light: effects on hydraulic and cell wall properties. Plant Physiol. 1991;95:1049–1056. doi: 10.1104/pp.95.4.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kobayashi M., Gaskin P., Spray C. R., Suzuki Y., Phinney B. O., MacMillan J. Metabolism and Biological Activity of Gibberellin A4 in Vegetative Shoots of Zea mays, Oryza sativa, and Arabidopsis thaliana. Plant Physiol. 1993 Jun;102(2):379–386. doi: 10.1104/pp.102.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Melaragno J. E., Mehrotra B., Coleman A. W. Relationship between Endopolyploidy and Cell Size in Epidermal Tissue of Arabidopsis. Plant Cell. 1993 Nov;5(11):1661–1668. doi: 10.1105/tpc.5.11.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Metzger J. D. Gibberellins and Light Regulated Petiole Growth in Thlaspi arvense L. Plant Physiol. 1988 Jan;86(1):237–240. doi: 10.1104/pp.86.1.237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Quail P. H. Phytochrome: a light-activated molecular switch that regulates plant gene expression. Annu Rev Genet. 1991;25:389–409. doi: 10.1146/annurev.ge.25.120191.002133. [DOI] [PubMed] [Google Scholar]
  13. Reed J. W., Nagpal P., Poole D. S., Furuya M., Chory J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell. 1993 Feb;5(2):147–157. doi: 10.1105/tpc.5.2.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rood S. B., Williams P. H., Pearce D., Murofushi N., Mander L. N., Pharis R. P. A mutant gene that increases gibberellin production in brassica. Plant Physiol. 1990 Jul;93(3):1168–1174. doi: 10.1104/pp.93.3.1168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Somers D. E., Sharrock R. A., Tepperman J. M., Quail P. H. The hy3 Long Hypocotyl Mutant of Arabidopsis Is Deficient in Phytochrome B. Plant Cell. 1991 Dec;3(12):1263–1274. doi: 10.1105/tpc.3.12.1263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Talon M., Zeevaart J. A., Gage D. A. Identification of Gibberellins in Spinach and Effects of Light and Darkness on their Levels. Plant Physiol. 1991 Dec;97(4):1521–1526. doi: 10.1104/pp.97.4.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Taylor A., Cosgrove D. J. Gibberellic Acid stimulation of cucumber hypocotyl elongation : effects on growth, turgor, osmotic pressure, and cell wall properties. Plant Physiol. 1989 Aug;90(4):1335–1340. doi: 10.1104/pp.90.4.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Wagner D., Tepperman J. M., Quail P. H. Overexpression of Phytochrome B Induces a Short Hypocotyl Phenotype in Transgenic Arabidopsis. Plant Cell. 1991 Dec;3(12):1275–1288. doi: 10.1105/tpc.3.12.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES