Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jan;107(1):141–148. doi: 10.1104/pp.107.1.141

Role of Abscisic Acid in Drought-Induced Freezing Tolerance, Cold Acclimation, and Accumulation of LT178 and RAB18 Proteins in Arabidopsis thaliana.

E Mantyla 1, V Lang 1, E T Palva 1
PMCID: PMC161176  PMID: 12228349

Abstract

To study the role of abscisic acid (ABA) in development of freezing tolerance of Arabidopsis thaliana, we exposed wild-type plants, the ABA-insensitive mutant abi1, and the ABA-deficient mutant aba-1 to low temperature (LT), exogenous ABA, and drought. Exposure of A. thaliana to drought stress resulted in a similar increase in freezing tolerance as achieved by ABA treatment or the initial stages of acclimation, suggesting overlapping responses to these environmental cues. ABA appears to be involved in both LT- and drought-induced freezing tolerance, since both ABA mutants were impaired in their responses to these stimuli. To correlate enhanced freezing tolerance with the presence of stress-specific proteins, we characterized the accumulation of RAB18 and LTI78 in two ecotypes, Landsberg erecta and Coimbra, and in the ABA mutants during stress response. LT- and drought-induced accumulation of RAB18 coincided with the increase in freezing tolerance and was blocked in the cold-acclimation-deficient ABA mutants. In contrast, LT178 accumulated in all genotypes in response to LT and drought and was always present when the plants were freezing tolerant. This suggests that development of freezing tolerance in A. thaliana requires ABA-controlled processes in addition to ABA-independent factors.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Bray E. A. Drought- and ABA-Induced Changes in Polypeptide and mRNA Accumulation in Tomato Leaves. Plant Physiol. 1988 Dec;88(4):1210–1214. doi: 10.1104/pp.88.4.1210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen H. H., Li P. H., Brenner M. L. Involvement of abscisic Acid in potato cold acclimation. Plant Physiol. 1983 Feb;71(2):362–365. doi: 10.1104/pp.71.2.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen T. H., Gusta L. V. Abscisic Acid-induced freezing resistance in cultured plant cells. Plant Physiol. 1983 Sep;73(1):71–75. doi: 10.1104/pp.73.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Close T. J., Kortt A. A., Chandler P. M. A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol Biol. 1989 Jul;13(1):95–108. doi: 10.1007/BF00027338. [DOI] [PubMed] [Google Scholar]
  6. Cloutier Y., Siminovitch D. Correlation between Cold- and Drought-Induced Frost Hardiness in Winter Wheat and Rye Varieties. Plant Physiol. 1982 Jan;69(1):256–258. doi: 10.1104/pp.69.1.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Daie J., Campbell W. F. Response of Tomato Plants to Stressful Temperatures : INCREASE IN ABSCISIC ACID CONCENTRATIONS. Plant Physiol. 1981 Jan;67(1):26–29. doi: 10.1104/pp.67.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gilmour S. J., Artus N. N., Thomashow M. F. cDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana. Plant Mol Biol. 1992 Jan;18(1):13–21. doi: 10.1007/BF00018452. [DOI] [PubMed] [Google Scholar]
  9. Gilmour S. J., Hajela R. K., Thomashow M. F. Cold Acclimation in Arabidopsis thaliana. Plant Physiol. 1988 Jul;87(3):745–750. doi: 10.1104/pp.87.3.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gilmour S. J., Thomashow M. F. Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol Biol. 1991 Dec;17(6):1233–1240. doi: 10.1007/BF00028738. [DOI] [PubMed] [Google Scholar]
  11. Guerrero F., Mullet J. E. Increased Abscisic Acid Biosynthesis during Plant Dehydration Requires Transcription. Plant Physiol. 1986 Feb;80(2):588–591. doi: 10.1104/pp.80.2.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guo W., Ward R. W., Thomashow M. F. Characterization of a Cold-Regulated Wheat Gene Related to Arabidopsis cor47. Plant Physiol. 1992 Oct;100(2):915–922. doi: 10.1104/pp.100.2.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Horvath D. P., McLarney B. K., Thomashow M. F. Regulation of Arabidopsis thaliana L. (Heyn) cor78 in response to low temperature. Plant Physiol. 1993 Dec;103(4):1047–1053. doi: 10.1104/pp.103.4.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Houde M., Danyluk J., Laliberté J. F., Rassart E., Dhindsa R. S., Sarhan F. Cloning, characterization, and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold acclimation in wheat. Plant Physiol. 1992 Aug;99(4):1381–1387. doi: 10.1104/pp.99.4.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jacobsen J. V., Shaw D. C. Heat-stable proteins and abscisic Acid action in barley aleurone cells. Plant Physiol. 1989 Dec;91(4):1520–1526. doi: 10.1104/pp.91.4.1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lang V., Mantyla E., Welin B., Sundberg B., Palva E. T. Alterations in Water Status, Endogenous Abscisic Acid Content, and Expression of rab18 Gene during the Development of Freezing Tolerance in Arabidopsis thaliana. Plant Physiol. 1994 Apr;104(4):1341–1349. doi: 10.1104/pp.104.4.1341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lin C., Thomashow M. F. A cold-regulated Arabidopsis gene encodes a polypeptide having potent cryoprotective activity. Biochem Biophys Res Commun. 1992 Mar 31;183(3):1103–1108. doi: 10.1016/s0006-291x(05)80304-3. [DOI] [PubMed] [Google Scholar]
  19. Lång V., Palva E. T. The expression of a rab-related gene, rab18, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh. Plant Mol Biol. 1992 Dec;20(5):951–962. doi: 10.1007/BF00027165. [DOI] [PubMed] [Google Scholar]
  20. Meza-Basso L., Alberdi M., Raynal M., Ferrero-Cadinanos M. L., Delseny M. Changes in Protein Synthesis in Rapeseed (Brassica napus) Seedlings during a Low Temperature Treatment. Plant Physiol. 1986 Nov;82(3):733–738. doi: 10.1104/pp.82.3.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Neven L. G., Haskell D. W., Hofig A., Li Q. B., Guy C. L. Characterization of a spinach gene responsive to low temperature and water stress. Plant Mol Biol. 1993 Jan;21(2):291–305. doi: 10.1007/BF00019945. [DOI] [PubMed] [Google Scholar]
  22. Nordin K., Heino P., Palva E. T. Separate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol. 1991 Jun;16(6):1061–1071. doi: 10.1007/BF00016077. [DOI] [PubMed] [Google Scholar]
  23. Nordin K., Vahala T., Palva E. T. Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Mol Biol. 1993 Feb;21(4):641–653. doi: 10.1007/BF00014547. [DOI] [PubMed] [Google Scholar]
  24. Ouellet F., Houde M., Sarhan F. Purification, characterization and cDNA cloning of the 200 kDa protein induced by cold acclimation in wheat. Plant Cell Physiol. 1993 Jan;34(1):59–65. [PubMed] [Google Scholar]
  25. Perras M., Sarhan F. Synthesis of Freezing Tolerance Proteins in Leaves, Crown, and Roots during Cold Acclimation of Wheat. Plant Physiol. 1989 Feb;89(2):577–585. doi: 10.1104/pp.89.2.577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Skriver K., Mundy J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell. 1990 Jun;2(6):503–512. doi: 10.1105/tpc.2.6.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Weiser C. J. Cold Resistance and Injury in Woody Plants: Knowledge of hardy plant adaptations to freezing stress may help us to reduce winter damage. Science. 1970 Sep 25;169(3952):1269–1278. doi: 10.1126/science.169.3952.1269. [DOI] [PubMed] [Google Scholar]
  28. Welin B. V., Olson A., Nylander M., Palva E. T. Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol Biol. 1994 Oct;26(1):131–144. doi: 10.1007/BF00039526. [DOI] [PubMed] [Google Scholar]
  29. Wolfraim L. A., Langis R., Tyson H., Dhindsa R. S. cDNA sequence, expression, and transcript stability of a cold acclimation-specific gene, cas18, of alfalfa (Medicago falcata) cells. Plant Physiol. 1993 Apr;101(4):1275–1282. doi: 10.1104/pp.101.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES