Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jan;107(1):177–186. doi: 10.1104/pp.107.1.177

Molecular and physiological responses to abscisic acid and salts in roots of salt-sensitive and salt-tolerant Indica rice varieties.

A Moons 1, G Bauw 1, E Prinsen 1, M Van Montagu 1, D Van der Straeten 1
PMCID: PMC161181  PMID: 7870812

Abstract

The Indica rice (Oryza sativa L.) varieties Pokkali and Nona Bokra are well-known salt tolerance donors in classical breeding. In an attempt to understand the molecular basis of their tolerance, physiological and gene expression studies were initiated. The effect of abscisic acid (ABA) on total proteins in roots from 12-d-old seedlings of Pokkali, Nona Bokra, and the salt-sensitive cultivar Taichung N1 were analyzed on two-dimensional gels. The abundance of ABA-induced proteins was highest in the most tolerant variety, Pokkali. Three ABA-responsive proteins, present at different levels in roots from tolerant and sensitive varieties, were further characterized by partial amino acid analysis. A novel histidine-rich protein and two types of late embryogenesis abundant (LEA) proteins were identified. Protein immunoblotting revealed that the levels of dehydrins and group 3 LEA proteins were significantly higher in roots from tolerant compared with sensitive varieties. Endogenous ABA levels showed a transient increase in roots exposed to osmotic shock (150 mM NaCl). Peak ABA concentrations were 30-fold higher for Nona Bokra and 6-fold higher for Pokkali compared with Taichung N1. Both the salt-induced endogenous ABA levels and a greater molecular response of root tissue to ABA were associated with the varietal differences in tolerance.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford K. J., Chandler P. M. Expression of "Dehydrin-Like" Proteins in Embryos and Seedlings of Zizania palustris and Oryza sativa during Dehydration. Plant Physiol. 1992 Jun;99(2):488–494. doi: 10.1104/pp.99.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Claes B., Dekeyser R., Villarroel R., Van den Bulcke M., Bauw G., Van Montagu M., Caplan A. Characterization of a rice gene showing organ-specific expression in response to salt stress and drought. Plant Cell. 1990 Jan;2(1):19–27. doi: 10.1105/tpc.2.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Close T. J., Kortt A. A., Chandler P. M. A cDNA-based comparison of dehydration-induced proteins (dehydrins) in barley and corn. Plant Mol Biol. 1989 Jul;13(1):95–108. doi: 10.1007/BF00027338. [DOI] [PubMed] [Google Scholar]
  4. Curry J., Walker-Simmons M. K. Unusual sequence of group 3 LEA (II) mRNA inducible by dehydration stress in wheat. Plant Mol Biol. 1993 Mar;21(5):907–912. doi: 10.1007/BF00027121. [DOI] [PubMed] [Google Scholar]
  5. Dure L., 3rd A repeating 11-mer amino acid motif and plant desiccation. Plant J. 1993 Mar;3(3):363–369. doi: 10.1046/j.1365-313x.1993.t01-19-00999.x. [DOI] [PubMed] [Google Scholar]
  6. Galvez A. F., Gulick P. J., Dvorak J. Characterization of the Early Stages of Genetic Salt-Stress Responses in Salt-Tolerant Lophopyrum elongatum, Salt-Sensitive Wheat, and Their Amphiploid. Plant Physiol. 1993 Sep;103(1):257–265. doi: 10.1104/pp.103.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gaxiola R., de Larrinoa I. F., Villalba J. M., Serrano R. A novel and conserved salt-induced protein is an important determinant of salt tolerance in yeast. EMBO J. 1992 Sep;11(9):3157–3164. doi: 10.1002/j.1460-2075.1992.tb05392.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gulick P. J., Dvorák J. Coordinate Gene Response to Salt Stress in Lophopyrum elongatum. Plant Physiol. 1992 Nov;100(3):1384–1388. doi: 10.1104/pp.100.3.1384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gulick P., Dvorák J. Gene induction and repression by salt treatment in roots of the salinity-sensitive Chinese Spring wheat and the salinity-tolerant Chinese Spring x Elytrigia elongata amphiploid. Proc Natl Acad Sci U S A. 1987 Jan;84(1):99–103. doi: 10.1073/pnas.84.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hong B., Barg R., Ho T. H. Developmental and organ-specific expression of an ABA- and stress-induced protein in barley. Plant Mol Biol. 1992 Feb;18(4):663–674. doi: 10.1007/BF00020009. [DOI] [PubMed] [Google Scholar]
  11. Houde M., Danyluk J., Laliberté J. F., Rassart E., Dhindsa R. S., Sarhan F. Cloning, characterization, and expression of a cDNA encoding a 50-kilodalton protein specifically induced by cold acclimation in wheat. Plant Physiol. 1992 Aug;99(4):1381–1387. doi: 10.1104/pp.99.4.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hurkman W. J., Fornari C. S., Tanaka C. K. A Comparison of the Effect of Salt on Polypeptides and Translatable mRNAs in Roots of a Salt-Tolerant and a Salt-Sensitive Cultivar of Barley. Plant Physiol. 1989 Aug;90(4):1444–1456. doi: 10.1104/pp.90.4.1444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hurkman W. J., Tanaka C. K. Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol. 1986 Jul;81(3):802–806. doi: 10.1104/pp.81.3.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Larosa P. C., Singh N. K., Hasegawa P. M., Bressan R. A. Stable NaCl Tolerance of Tobacco Cells Is Associated with Enhanced Accumulation of Osmotin. Plant Physiol. 1989 Nov;91(3):855–861. doi: 10.1104/pp.91.3.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mohapatra S. S., Poole R. J., Dhindsa R. S. Abscisic Acid-regulated gene expression in relation to freezing tolerance in alfalfa. Plant Physiol. 1988 Jun;87(2):468–473. doi: 10.1104/pp.87.2.468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mundy J., Chua N. H. Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J. 1988 Aug;7(8):2279–2286. doi: 10.1002/j.1460-2075.1988.tb03070.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pla M., Gómez J., Goday A., Pagès M. Regulation of the abscisic acid-responsive gene rab28 in maize viviparous mutants. Mol Gen Genet. 1991 Dec;230(3):394–400. doi: 10.1007/BF00280296. [DOI] [PubMed] [Google Scholar]
  18. Ramagopal S. Differential mRNA transcription during salinity stress in barley. Proc Natl Acad Sci U S A. 1987 Jan;84(1):94–98. doi: 10.1073/pnas.84.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ried J. L., Walker-Simmons M. K. Group 3 Late Embryogenesis Abundant Proteins in Desiccation-Tolerant Seedlings of Wheat (Triticum aestivum L.). Plant Physiol. 1993 May;102(1):125–131. doi: 10.1104/pp.102.1.125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Roberton M., Chandler P. M. Pea dehydrins: identification, characterisation and expression. Plant Mol Biol. 1992 Sep;19(6):1031–1044. doi: 10.1007/BF00040534. [DOI] [PubMed] [Google Scholar]
  21. Roberts J. K., DeSimone N. A., Lingle W. L., Dure L., 3rd Cellular Concentrations and Uniformity of Cell-Type Accumulation of Two Lea Proteins in Cotton Embryos. Plant Cell. 1993 Jul;5(7):769–780. doi: 10.1105/tpc.5.7.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Skriver K., Mundy J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell. 1990 Jun;2(6):503–512. doi: 10.1105/tpc.2.6.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vilardell J., Goday A., Freire M. A., Torrent M., Martínez M. C., Torné J. M., Pagès M. Gene sequence, developmental expression, and protein phosphorylation of RAB-17 in maize. Plant Mol Biol. 1990 Mar;14(3):423–432. doi: 10.1007/BF00028778. [DOI] [PubMed] [Google Scholar]
  24. Walker-Simmons M. ABA Levels and Sensitivity in Developing Wheat Embryos of Sprouting Resistant and Susceptible Cultivars. Plant Physiol. 1987 May;84(1):61–66. doi: 10.1104/pp.84.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES