Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jan;107(1):187–197. doi: 10.1104/pp.107.1.187

A Mutation in the D-de Loop of D1 Modifies the Stability of the S2QA- and S2QB- States in Photosystem II.

P Maenpaa 1, T Miranda 1, E Tyystjarvi 1, T Tyystjarvi 1, Govindjee 1, J M Ducruet 1, A L Etienne 1, D Kirilovsky 1
PMCID: PMC161184  PMID: 12228353

Abstract

Photosystem II electron transfer, charge stabilization, and photoinhibition were studied in three site-specific mutants of the D1 polypeptide of Synechocystis PCC 6803: E243K, E229D, and CA1 (deletion of three glutamates 242-244 and a substitution, glutamine-241 to histidine). The phenotypes of the E229D and E243K mutants were similar to that of the control strain (AR) in all of the studied aspects. The characteristics of CA1 were very different. Formate, which inhibits the QA- to QB- reaction, was severalfold less effective in CA1 than in AR. The S2QA- and S2QB- states were stabilized in CA1. It was previously shown that the electron transfer between QA- and QB was modified in CA1 (P Maenpaa, T. Kallio, P. Mulo, G. Salih, E.-M. Aro, E. Tyystjarvi, C. Jansson [1993] Plant Mol Biol 22: 1-12). A change in the redox potential of the QA/QA- couple, which renders the reoxidation of QA- by back or forward reactions more difficult, could explain the phenotype of CA1. Although the rates of photoinhibition measured as inhibition of oxygen evolution, Chl fluorescence quenching, and decrease of thermoluminescence B and Q bands were similar in AR and CA1, the CA1 strain more quickly reached a state from which the cells were unable to recover their activity. The results described in this paper suggest that a modification in the structure of the D-de loop of D1 could influence the properties of the couple QA/QA- in D2 and the mechanism of recovery from photoinhibition.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett A., Bogorad L. Complementary chromatic adaptation in a filamentous blue-green alga. J Cell Biol. 1973 Aug;58(2):419–435. doi: 10.1083/jcb.58.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burnap R. L., Shen J. R., Jursinic P. A., Inoue Y., Sherman L. A. Oxygen yield and thermoluminescence characteristics of a cyanobacterium lacking the manganese-stabilizing protein of photosystem II. Biochemistry. 1992 Aug 18;31(32):7404–7410. doi: 10.1021/bi00147a027. [DOI] [PubMed] [Google Scholar]
  3. Devault D., Govindjee, Arnold W. Energetics of photosynthetic glow peaks. Proc Natl Acad Sci U S A. 1983 Feb;80(4):983–987. doi: 10.1073/pnas.80.4.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gleiter H. M., Ohad N., Koike H., Hirschberg J., Renger G., Inoue Y. Thermoluminescence and flash-induced oxygen yield in herbicide resistant mutants of the D1 protein in Synechococcus PCC7942. Biochim Biophys Acta. 1992 Dec 7;1140(2):135–143. doi: 10.1016/0005-2728(92)90002-j. [DOI] [PubMed] [Google Scholar]
  5. Govindjee, Vernotte C., Peteri B., Astier C., Etienne A. L. Differential sensitivity of bicarbonate-reversible formate effects on herbicide-resistant mutants of Synechocystis 6714. FEBS Lett. 1990 Jul 16;267(2):273–276. doi: 10.1016/0014-5793(90)80943-d. [DOI] [PubMed] [Google Scholar]
  6. Joliot P., Bennoun P., Joliot A. New evidence supporting energy transfer between photosynthetic units. Biochim Biophys Acta. 1973 May 30;305(2):317–328. doi: 10.1016/0005-2728(73)90179-5. [DOI] [PubMed] [Google Scholar]
  7. Joliot P., Joliot A. A polarographic method for detection of oxygen production and reduction of hill reagent by isolated chloroplasts. Biochim Biophys Acta. 1968 Apr 2;153(3):625–634. doi: 10.1016/0005-2728(68)90190-4. [DOI] [PubMed] [Google Scholar]
  8. Kirilovsky D. L., Ajlani G., Picaud M., Etienne A. L. Mutations responsible for high light sensitivity in an atrazine-resistant mutant of Synechocystis 6714. Plant Mol Biol. 1989 Oct;13(4):355–363. doi: 10.1007/BF00015547. [DOI] [PubMed] [Google Scholar]
  9. Kless H., Oren-Shamir M., Ohad I., Edelman M., Vermaas W. Protein modifications in the D2 protein of photosystem II affect properties of the QB/herbicide-binding environment. Z Naturforsch C. 1993 Mar-Apr;48(3-4):185–190. doi: 10.1515/znc-1993-3-413. [DOI] [PubMed] [Google Scholar]
  10. Kok B., Forbush B., McGloin M. Cooperation of charges in photosynthetic O2 evolution-I. A linear four step mechanism. Photochem Photobiol. 1970 Jun;11(6):457–475. doi: 10.1111/j.1751-1097.1970.tb06017.x. [DOI] [PubMed] [Google Scholar]
  11. Lavorel J. Matrix analysis of the oxygen evolving system of photosynthesis. J Theor Biol. 1976 Mar;57(1):171–185. doi: 10.1016/s0022-5193(76)80011-2. [DOI] [PubMed] [Google Scholar]
  12. Mäenpä P., Kallio T., Mulo P., Salih G., Aro E. M., Tyystjärvi E., Jansson C. Site-specific mutations in the D1 polypeptide affect the susceptibility of Synechocystis 6803 cells to photoinhibition. Plant Mol Biol. 1993 Apr;22(1):1–12. doi: 10.1007/BF00038991. [DOI] [PubMed] [Google Scholar]
  13. Ohad I., Kyle D. J., Arntzen C. J. Membrane protein damage and repair: removal and replacement of inactivated 32-kilodalton polypeptides in chloroplast membranes. J Cell Biol. 1984 Aug;99(2):481–485. doi: 10.1083/jcb.99.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ohad N., Amir-Shapira D., Koike H., Inoue Y., Ohad I., Hirschberg J. Amino acid substitutions in the D1 protein of photosystem II affect QB- stabilization and accelerate turnover of D1. Z Naturforsch C. 1990 May;45(5):402–407. doi: 10.1515/znc-1990-0515. [DOI] [PubMed] [Google Scholar]
  15. Ohad N., Hirschberg J. Mutations in the D1 subunit of photosystem II distinguish between quinone and herbicide binding sites. Plant Cell. 1992 Mar;4(3):273–282. doi: 10.1105/tpc.4.3.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Perewoska I., Etienne A. L., Miranda T., Kirilovsky D. S1 destabilization and higher sensitivity to light in metribuzin-resistant mutants. Plant Physiol. 1994 Jan;104(1):235–245. doi: 10.1104/pp.104.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rutherford A. W. Photosystem II, the water-splitting enzyme. Trends Biochem Sci. 1989 Jun;14(6):227–232. doi: 10.1016/0968-0004(89)90032-7. [DOI] [PubMed] [Google Scholar]
  18. Tischer W., Strotmann H. Relationship between inhibitor binding by chloroplasts and inhibition of photosynthetic electron transport. Biochim Biophys Acta. 1977 Apr 11;460(1):113–125. doi: 10.1016/0005-2728(77)90157-8. [DOI] [PubMed] [Google Scholar]
  19. Tyystjärvi T., Aro E. M., Jansson C., Mäenpä P. Changes of amino acid sequence in PEST-like area and QEEET motif affect degradation rate of D1 polypeptide in photosystem II. Plant Mol Biol. 1994 Jun;25(3):517–526. doi: 10.1007/BF00043879. [DOI] [PubMed] [Google Scholar]
  20. Vernotte C., Etienne A. L., Briantais J. M. Quenching of the system II chlorophyll fluorescence by the plastoquinone pool. Biochim Biophys Acta. 1979 Mar 15;545(3):519–527. doi: 10.1016/0005-2728(79)90160-9. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES