Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1996 Jul;8(7):1121–1135. doi: 10.1105/tpc.8.7.1121

Identification of the major starch synthase in the soluble fraction of potato tubers.

J Marshall 1, C Sidebottom 1, M Debet 1, C Martin 1, A M Smith 1, A Edwards 1
PMCID: PMC161188  PMID: 8768372

Abstract

The major isoform of starch synthase from the soluble fraction of developing potato tubers has been purified and used to prepare an antibody and isolate a cDNA. The protein is 140 kD, and it is distinctly different in predicted primary amino acid sequence from other isoforms of the enzyme thus far described. Immunoinhibition and immunoblotting experiments and analysis of tubers in which activity of the isoform was reduced through expression of antisense mRNA revealed that the isoform accounts for approximately 80% of the activity in the soluble fraction of the tuber and that it is also bound to starch granules. Severe reductions in activity had no discernible effect on starch content or amylose-to-amylopectin ratio of starch in tubers. However, they caused a profound change in the morphology of starch granules, indicative of important underlying changes in the structure of starch polymers within the granule.

Full Text

The Full Text of this article is available as a PDF (3.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhattacharyya M. K., Smith A. M., Ellis T. H., Hedley C., Martin C. The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell. 1990 Jan 12;60(1):115–122. doi: 10.1016/0092-8674(90)90721-p. [DOI] [PubMed] [Google Scholar]
  3. Clark J. R., Robertson M., Ainsworth C. C. Nucleotide sequence of a wheat (Triticum aestivum L.) cDNA clone encoding the waxy protein. Plant Mol Biol. 1991 Jun;16(6):1099–1101. doi: 10.1007/BF00016086. [DOI] [PubMed] [Google Scholar]
  4. Denyer K., Sidebottom C., Hylton C. M., Smith A. M. Soluble isoforms of starch synthase and starch-branching enzyme also occur within starch granules in developing pea embryos. Plant J. 1993 Jul;4(1):191–198. doi: 10.1046/j.1365-313x.1993.04010191.x. [DOI] [PubMed] [Google Scholar]
  5. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Frydman R. B., Cardini C. E. Studies on the biosynthesis of starch. I. Isolation and properties of the soluble adenosine diphosphate glucose: starch glucosyltransferase of Solanum tuberosum. Arch Biochem Biophys. 1966 Sep 26;116(1):9–18. doi: 10.1016/0003-9861(66)90005-1. [DOI] [PubMed] [Google Scholar]
  7. Furukawa K., Tagaya M., Inouye M., Preiss J., Fukui T. Identification of lysine 15 at the active site in Escherichia coli glycogen synthase. Conservation of Lys-X-Gly-Gly sequence in the bacterial and mammalian enzymes. J Biol Chem. 1990 Feb 5;265(4):2086–2090. [PubMed] [Google Scholar]
  8. Gavel Y., von Heijne G. A conserved cleavage-site motif in chloroplast transit peptides. FEBS Lett. 1990 Feb 26;261(2):455–458. doi: 10.1016/0014-5793(90)80614-o. [DOI] [PubMed] [Google Scholar]
  9. Kiel J. A., Boels J. M., Beldman G., Venema G. Glycogen in Bacillus subtilis: molecular characterization of an operon encoding enzymes involved in glycogen biosynthesis and degradation. Mol Microbiol. 1994 Jan;11(1):203–218. doi: 10.1111/j.1365-2958.1994.tb00301.x. [DOI] [PubMed] [Google Scholar]
  10. Kuipers AGJ., Jacobsen E., Visser RGF. Formation and Deposition of Amylose in the Potato Tuber Starch Granule Are Affected by the Reduction of Granule-Bound Starch Synthase Gene Expression. Plant Cell. 1994 Jan;6(1):43–52. doi: 10.1105/tpc.6.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kumar A., Larsen C. E., Preiss J. Biosynthesis of bacterial glycogen. Primary structure of Escherichia coli ADP-glucose:alpha-1,4-glucan, 4-glucosyltransferase as deduced from the nucleotide sequence of the glgA gene. J Biol Chem. 1986 Dec 5;261(34):16256–16259. [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Okagaki R. J. Nucleotide sequence of a long cDNA from the rice waxy gene. Plant Mol Biol. 1992 Jun;19(3):513–516. doi: 10.1007/BF00023402. [DOI] [PubMed] [Google Scholar]
  14. Rohde W., Becker D., Salamini F. Structural analysis of the waxy locus from Hordeum vulgare. Nucleic Acids Res. 1988 Jul 25;16(14B):7185–7186. doi: 10.1093/nar/16.14.7185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Salehuzzaman S. N., Jacobsen E., Visser R. G. Isolation and characterization of a cDNA encoding granule-bound starch synthase in cassava (Manihot esculenta Crantz) and its antisense expression in potato. Plant Mol Biol. 1993 Dec;23(5):947–962. doi: 10.1007/BF00021811. [DOI] [PubMed] [Google Scholar]
  16. Shewmaker C. K., Stalker D. M. Modifying starch biosynthesis with transgenes in potatoes. Plant Physiol. 1992 Nov;100(3):1083–1086. doi: 10.1104/pp.100.3.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Smith A. M., Denyer K., Martin C. R. What Controls the Amount and Structure of Starch in Storage Organs? Plant Physiol. 1995 Mar;107(3):673–677. doi: 10.1104/pp.107.3.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tsai C. Y. The function of the waxy locus in starch synthesis in maize endosperm. Biochem Genet. 1974 Feb;11(2):83–96. doi: 10.1007/BF00485766. [DOI] [PubMed] [Google Scholar]
  19. Uttaro A. D., Cangelosi G. A., Geremia R. A., Nester E. W., Ugalde R. A. Biochemical characterization of avirulent exoC mutants of Agrobacterium tumefaciens. J Bacteriol. 1990 Mar;172(3):1640–1646. doi: 10.1128/jb.172.3.1640-1646.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Visser R. G., Somhorst I., Kuipers G. J., Ruys N. J., Feenstra W. J., Jacobsen E. Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Mol Gen Genet. 1991 Feb;225(2):289–296. doi: 10.1007/BF00269861. [DOI] [PubMed] [Google Scholar]
  21. Vos-Scheperkeuter G. H., de Boer W., Visser R. G., Feenstra W. J., Witholt B. Identification of granule-bound starch synthase in potato tubers. Plant Physiol. 1986 Oct;82(2):411–416. doi: 10.1104/pp.82.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vretblad P. Immobilization of ligands for biospecific affinity chromatography via their hydroxyl groups. The cyclohexaamylose-beta-amylase system. FEBS Lett. 1974 Oct 1;47(1):86–89. doi: 10.1016/0014-5793(74)80431-x. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES