Abstract
Previously, a partial-length cDNA and a complete genomic clone encoding a putative sarcoplasmic reticulum-type Ca2+-ATPase (LCA, Lycopersicon Ca2+-ATPase) were isolated from tomato. To determine the subcellular localization of this Ca2+-ATPase, specific polyclonal antibodies raised against a fusion protein encoding a portion of the LCA polypeptide were generated. Based on hybridization of the LCA cDNA and of the nucleotide sequence encoding the fusion protein to genomic DNA, it appears that LCA and the fusion protein domain are encoded by a single gene in tomato. Antibodies raised against the LCA domain fusion protein reacted specifically with two polypeptides of 116 and 120 kD that are localized in the vacuolar and plasma membranes, respectively. The distribution of vanadate-sensitive ATP-dependent Ca2+ transport activities in sucrose gradients coincided with the distribution of the immunodetected proteins. The ATP-dependent Ca2+ transport activities associated with tonoplast and plasma membrane fractions shared similar properties, because both fractions were inhibited by vanadate but insensitive to carbonyl cyanide m-chlorophenylhydrazone, nitrate, and calmodulin. Moreover, antibodies raised against the LCA domain fusion protein inhibited ATP-dependent Ca2+ uptake activity associated with both the tonoplast and plasma membrane fractions. These data suggest that a single gene (LCA) may encode two P-type Ca2+-ATPase isoforms that are differentially localized in the tonoplast and plasma membrane of tomato roots.
Full Text
The Full Text of this article is available as a PDF (2.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Askerlund P., Evans D. E. Reconstitution and Characterization of a Calmodulin-Stimulated Ca-Pumping ATPase Purified from Brassica oleracea L. Plant Physiol. 1992 Dec;100(4):1670–1681. doi: 10.1104/pp.100.4.1670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birkett C. R., Foster K. E., Johnson L., Gull K. Use of monoclonal antibodies to analyse the expression of a multi-tubulin family. FEBS Lett. 1985 Aug 5;187(2):211–218. doi: 10.1016/0014-5793(85)81244-8. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Briars S. A., Evans D. E. The calmodulin-stimulated ATPase of maize coleoptiles forms a phosphorylated intermediate. Biochem Biophys Res Commun. 1989 Feb 28;159(1):185–191. doi: 10.1016/0006-291x(89)92421-2. [DOI] [PubMed] [Google Scholar]
- Briskin D. P. Ca-translocating ATPase of the plant plasma membrane. Plant Physiol. 1990 Oct;94(2):397–400. doi: 10.1104/pp.94.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bush D. R., Sze H. Calcium transport in tonoplast and endoplasmic reticulum vesicles isolated from cultured carrot cells. Plant Physiol. 1986 Feb;80(2):549–555. doi: 10.1104/pp.80.2.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carafoli E. Calcium pump of the plasma membrane. Physiol Rev. 1991 Jan;71(1):129–153. doi: 10.1152/physrev.1991.71.1.129. [DOI] [PubMed] [Google Scholar]
- Dupont F. M., Bush D. S., Windle J. J., Jones R. L. Calcium and proton transport in membrane vesicles from barley roots. Plant Physiol. 1990 Sep;94(1):179–188. doi: 10.1104/pp.94.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabathuler R., Kvist S. The endoplasmic reticulum retention signal of the E3/19K protein of adenovirus type 2 consists of three separate amino acid segments at the carboxy terminus. J Cell Biol. 1990 Nov;111(5 Pt 1):1803–1810. doi: 10.1083/jcb.111.5.1803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hochachka P. W. Defense strategies against hypoxia and hypothermia. Science. 1986 Jan 17;231(4735):234–241. doi: 10.1126/science.2417316. [DOI] [PubMed] [Google Scholar]
- Hsieh W. L., Pierce W. S., Sze H. Calcium-pumping ATPases in vesicles from carrot cells : stimulation by calmodulin or phosphatidylserine, and formation of a 120 kilodalton phosphoenzyme. Plant Physiol. 1991 Dec;97(4):1535–1544. doi: 10.1104/pp.97.4.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson M. R., Nilsson T., Peterson P. A. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J. 1990 Oct;9(10):3153–3162. doi: 10.1002/j.1460-2075.1990.tb07513.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joyce D. C., Cramer G. R., Reid M. S., Bennett A. B. Transport Properties of the Tomato Fruit Tonoplast : III. Temperature Dependence of Calcium Transport. Plant Physiol. 1988 Dec;88(4):1097–1103. doi: 10.1104/pp.88.4.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karin N. J., Settle V. J. The sarcoplasmic reticulum Ca(2+)-ATPase, SERCA1a, contains endoplasmic reticulum targeting information. Biochem Biophys Res Commun. 1992 Jul 15;186(1):219–227. doi: 10.1016/s0006-291x(05)80796-x. [DOI] [PubMed] [Google Scholar]
- Kasai M., Muto S. Ca2+ pump and Ca2+/H+ antiporter in plasma membrane vesicles isolated by aqueous two-phase partitioning from corn leaves. J Membr Biol. 1990 Mar;114(2):133–142. doi: 10.1007/BF01869094. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lytton J., MacLennan D. H. Molecular cloning of cDNAs from human kidney coding for two alternatively spliced products of the cardiac Ca2+-ATPase gene. J Biol Chem. 1988 Oct 15;263(29):15024–15031. [PubMed] [Google Scholar]
- Napier R. M., Fowke L. C., Hawes C., Lewis M., Pelham H. R. Immunological evidence that plants use both HDEL and KDEL for targeting proteins to the endoplasmic reticulum. J Cell Sci. 1992 Jun;102(Pt 2):261–271. doi: 10.1242/jcs.102.2.261. [DOI] [PubMed] [Google Scholar]
- Pelham H. R. Control of protein exit from the endoplasmic reticulum. Annu Rev Cell Biol. 1989;5:1–23. doi: 10.1146/annurev.cb.05.110189.000245. [DOI] [PubMed] [Google Scholar]
- Perez-Prat E., Narasimhan M. L., Binzel M. L., Botella M. A., Chen Z., Valpuesta V., Bressan R. A., Hasegawa P. M. Induction of a Putative Ca-ATPase mRNA in NaCl-Adapted Cells. Plant Physiol. 1992 Nov;100(3):1471–1478. doi: 10.1104/pp.100.3.1471. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poovaiah B. W., Reddy A. S. Calcium and signal transduction in plants. CRC Crit Rev Plant Sci. 1993;12(3):185–211. doi: 10.1080/07352689309701901. [DOI] [PubMed] [Google Scholar]
- Rasi-Caldogno F., Carnelli A., De Michelis M. I. Controlled Proteolysis Activates the Plasma Membrane Ca2+ Pump of Higher Plants (A Comparison with the Effect of Calmodulin in Plasma Membrane from Radish Seedlings). Plant Physiol. 1993 Oct;103(2):385–390. doi: 10.1104/pp.103.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rasi-Caldogno F., Carnelli A., De Michelis M. I. Plasma Membrane Ca-ATPase of Radish Seedlings : II. Regulation by Calmodulin. Plant Physiol. 1992 Mar;98(3):1202–1206. doi: 10.1104/pp.98.3.1202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rengel Z., Elliott D. C. Mechanism of aluminum inhibition of net ca uptake by amaranthus protoplasts. Plant Physiol. 1992 Feb;98(2):632–638. doi: 10.1104/pp.98.2.632. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schatzmann H. J. The calcium pump of the surface membrane and of the sarcoplasmic reticulum. Annu Rev Physiol. 1989;51:473–485. doi: 10.1146/annurev.ph.51.030189.002353. [DOI] [PubMed] [Google Scholar]
- Siebers B., Gräf P., Weiler E. W. Calcium Fluxes across the Plasma Membrane of Commelina communis L. Assayed in a Cell-Free System. Plant Physiol. 1990 Jul;93(3):940–947. doi: 10.1104/pp.93.3.940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
- Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
- Thomson L. J., Xing T., Hall J. L., Williams L. E. Investigation of the Calcium-Transporting ATPases at the Endoplasmic Reticulum and Plasma Membrane of Red Beet (Beta vulgaris). Plant Physiol. 1993 Jun;102(2):553–564. doi: 10.1104/pp.102.2.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Townsley F. M., Pelham H. R. The KKXX signal mediates retrieval of membrane proteins from the Golgi to the ER in yeast. Eur J Cell Biol. 1994 Jun;64(1):211–216. [PubMed] [Google Scholar]
- Van den Bosch L., Eggermont J., De Smedt H., Mertens L., Wuytack F., Casteels R. Regulation of splicing is responsible for the expression of the muscle-specific 2a isoform of the sarco/endoplasmic-reticulum Ca(2+)-ATPase. Biochem J. 1994 Sep 1;302(Pt 2):559–566. doi: 10.1042/bj3020559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams L. E., Schueler S. B., Briskin D. P. Further Characterization of the Red Beet Plasma Membrane Ca-ATPase Using GTP as an Alternative Substrate. Plant Physiol. 1990 Mar;92(3):747–754. doi: 10.1104/pp.92.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wimmers L. E., Ewing N. N., Bennett A. B. Higher plant Ca(2+)-ATPase: primary structure and regulation of mRNA abundance by salt. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9205–9209. doi: 10.1073/pnas.89.19.9205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zvaritch E., Vellani F., Guerini D., Carafoli E. A signal for endoplasmic reticulum retention located at the carboxyl terminus of the plasma membrane Ca(2+)-ATPase isoform 4CI. J Biol Chem. 1995 Feb 10;270(6):2679–2688. doi: 10.1074/jbc.270.6.2679. [DOI] [PubMed] [Google Scholar]