Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Jan;107(1):253–262. doi: 10.1104/pp.107.1.253

The Impact of Chlorophyll-Retention Mutations, d1d2 and cyt-G1, during Embryogeny in Soybean.

W S Chao 1, V Liu 1, W W Thomson 1, K Platt 1, L L Walling 1
PMCID: PMC161196  PMID: 12228359

Abstract

The ultrastructural, physiological, and molecular changes in developing and mature seeds were monitored in a control line (Glycine max [L.] Merr., cv Clark) that exhibited seed degreening and two mutant lines (d1d2 and cyt-G1) that retained chlorophyll upon seed maturation. Ultrastructural studies showed that the control line had no internal membranes, whereas stacked thylakoid membranes were detected in the green seed from the mutant lines. Pigment analyses indicated that total chlorophyll was lowest in the mature seeds of the control line. Mature d1d2 and cyt-G1 seed had elevated Chl a and Chl b levels, respectively. In both control and mutant lines, Lhcb1, Lhcb2, and RbcS mRNAs were abundant in embryos prior to cotyledon filling, declined after the onset of storage protein accumulation, and were barely detectable or undetectable in all later stages of seed development. Therefore, the chlorophyll-retention phenotype must be a result of the alteration of a process that occurs after translation of photosynthesis-related mRNAs to stabilize apoprotein and pigment levels. Furthermore, different elements controlling either the synthesis or turnover of Chl a and Chl b must be impaired in the d1d2 and cyt-G1 lines. No reproducible differences in total leaf, embryonic, and chloroplast protein profiles and plastid DNAs could be correlated with the mutations that induced chlorophyll retention.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad M., Cashmore A. R. HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature. 1993 Nov 11;366(6451):162–166. doi: 10.1038/366162a0. [DOI] [PubMed] [Google Scholar]
  2. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Buchanan-Wollaston V. Isolation of cDNA clones for genes that are expressed during leaf senescence in Brassica napus. Identification of a gene encoding a senescence-specific metallothionein-like protein. Plant Physiol. 1994 Jul;105(3):839–846. doi: 10.1104/pp.105.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CRELIN E. S. Mitosis in adult cartilage. Science. 1957 Apr 5;125(3249):650–650. doi: 10.1126/science.125.3249.650. [DOI] [PubMed] [Google Scholar]
  5. Chang Y. C., Walling L. L. Chlorophyll a/b-binding protein genes are differentially expressed during soybean development. Plant Mol Biol. 1992 May;19(2):217–230. doi: 10.1007/BF00027343. [DOI] [PubMed] [Google Scholar]
  6. Cheung A. Y., McNellis T., Piekos B. Maintenance of Chloroplast Components during Chromoplast Differentiation in the Tomato Mutant Green Flesh. Plant Physiol. 1993 Apr;101(4):1223–1229. doi: 10.1104/pp.101.4.1223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davies T. G., Thomas H., Thomas B. J., Rogers L. J. Leaf Senescence in a Nonyellowing Mutant of Festuca pratensis: Metabolism of Cytochrome f. Plant Physiol. 1990 Jun;93(2):588–595. doi: 10.1104/pp.93.2.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guiamét J. J., Schwartz E., Pichersky E., Noodén L. D. Characterization of Cytoplasmic and Nuclear Mutations Affecting Chlorophyll and Chlorophyll-Binding Proteins during Senescence in Soybean. Plant Physiol. 1991 May;96(1):227–231. doi: 10.1104/pp.96.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kolodner R., Tewari K. K. The molecular size and conformation of the chloroplast DNA from higher plants. Biochim Biophys Acta. 1975 Sep 1;402(3):372–390. doi: 10.1016/0005-2787(75)90273-7. [DOI] [PubMed] [Google Scholar]
  10. Ooms JJJ., Leon-Kloosterziel K. M., Bartels D., Koornneef M., Karssen C. M. Acquisition of Desiccation Tolerance and Longevity in Seeds of Arabidopsis thaliana (A Comparative Study Using Abscisic Acid-Insensitive abi3 Mutants). Plant Physiol. 1993 Aug;102(4):1185–1191. doi: 10.1104/pp.102.4.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Owen F V. Inheritance Studies in Soybeans. I. Cotyledon Color. Genetics. 1927 Sep;12(5):441–448. doi: 10.1093/genetics/12.5.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pautot V., Holzer F. M., Walling L. L. Differential expression of tomato proteinase inhibitor I and II genes during bacterial pathogen invasion and wounding. Mol Plant Microbe Interact. 1991 May-Jun;4(3):284–292. doi: 10.1094/mpmi-4-284. [DOI] [PubMed] [Google Scholar]
  13. Rabilloud T., Carpentier G., Tarroux P. Improvement and simplification of low-background silver staining of proteins by using sodium dithionite. Electrophoresis. 1988 Jun;9(6):288–291. doi: 10.1002/elps.1150090608. [DOI] [PubMed] [Google Scholar]
  14. Smart C. M., Scofield S. R., Bevan M. W., Dyer T. A. Delayed Leaf Senescence in Tobacco Plants Transformed with tmr, a Gene for Cytokinin Production in Agrobacterium. Plant Cell. 1991 Jul;3(7):647–656. doi: 10.1105/tpc.3.7.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
  16. Staehelin L. A., Arntzen C. J. Regulation of chloroplast membrane function: protein phosphorylation changes the spatial organization of membrane components. J Cell Biol. 1983 Nov;97(5 Pt 1):1327–1337. doi: 10.1083/jcb.97.5.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sugita M., Manzara T., Pichersky E., Cashmore A., Gruissem W. Genomic organization, sequence analysis and expression of all five genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from tomato. Mol Gen Genet. 1987 Sep;209(2):247–256. doi: 10.1007/BF00329650. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES