Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1996 Jul;8(7):1209–1220. doi: 10.1105/tpc.8.7.1209

A Similar Dichotomy of Sugar Modulation and Developmental Expression Affects Both Paths of Sucrose Metabolism: Evidence from a Maize Invertase Gene Family.

J Xu 1, WT Avigne 1, DR McCarty 1, KE Koch 1
PMCID: PMC161207  PMID: 12239414

Abstract

Invertase and sucrose synthase catalyze the two known paths for the first step in carbon use by sucrose-importing plant cells. The hypothesis that sugar-modulated expression of these genes could provide a means of import adjustment was initially suggested based on data from sucrose synthases alone; however, this hypothesis remained largely conjectural without critical evidence for invertases. Toward this end, a family of maize invertases was cloned and characterized. Here, we show that invertases are indeed sugar modulated and, surprisingly, like the sucrose synthase genes, fall into two classes with contrasting sugar responses. In both families, one class of genes is upregulated by increasing carbohydrate supply (Sucrose synthase1 [Sus1] and Invertase2 [Ivr2]), whereas a second class in the same family is repressed by sugars and upregulated by depletion of this resource (Shrunken1 [Sh1] and Invertase1 [Ivr1]). The two classes also display differential expression during development, with sugar-enhanced genes (Sus1 and Ivr2) expressed in many importing organs and sugar-repressed, starvation-tolerant genes (Sh1 and Ivr1) upregulated primarily during reproductive development. Both the Ivr1 and Ivr2 invertase mRNAs are abundant in root tips, very young kernels, silk, anthers, and pollen, where a close relationship is evident between changes in message abundance and soluble invertase activity. During development, patterns of expression shift as assimilate partitioning changes from elongating silks to newly fertilized kernels. Together, the data support a model for integrating expression of genes differentially responsive to carbohydrate availability (i.e., feast and famine conditions) with developmental signals. The demonstration that similar regulatory patterns occur in both paths of sucrose metabolism indicates a potential to influence profoundly the adjustment of carbon resource allocation.

Full Text

The Full Text of this article is available as a PDF (3.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Duke E. R., McCarty D. R., Koch K. E. Organ-specific invertase deficiency in the primary root of an inbred maize line. Plant Physiol. 1991 Oct;97(2):523–527. doi: 10.1104/pp.97.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Fu H., Kim S. Y., Park W. D. High-level tuber expression and sucrose inducibility of a potato Sus4 sucrose synthase gene require 5' and 3' flanking sequences and the leader intron. Plant Cell. 1995 Sep;7(9):1387–1394. doi: 10.1105/tpc.7.9.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fu H., Park W. D. Sink- and vascular-associated sucrose synthase functions are encoded by different gene classes in potato. Plant Cell. 1995 Sep;7(9):1369–1385. doi: 10.1105/tpc.7.9.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gancedo J. M. Carbon catabolite repression in yeast. Eur J Biochem. 1992 Jun 1;206(2):297–313. doi: 10.1111/j.1432-1033.1992.tb16928.x. [DOI] [PubMed] [Google Scholar]
  5. Graham I. A., Denby K. J., Leaver C. J. Carbon Catabolite Repression Regulates Glyoxylate Cycle Gene Expression in Cucumber. Plant Cell. 1994 May;6(5):761–772. doi: 10.1105/tpc.6.5.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hanft J. M., Jones R. J. Kernel abortion in maize : I. Carbohydrate concentration patterns and Acid invertase activity of maize kernels induced to abort in vitro. Plant Physiol. 1986 Jun;81(2):503–510. doi: 10.1104/pp.81.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hatch M. D., Glasziou K. T. Sugar Accumulation Cycle in Sugar Cane. II. Relationship of Invertase Activity to Sugar Content & Growth Rate in Storage Tissue of Plants Grown in Controlled Environments. Plant Physiol. 1963 May;38(3):344–348. doi: 10.1104/pp.38.3.344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Helentjaris T. Implications for conserved genomic structure among plant species. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8308–8309. doi: 10.1073/pnas.90.18.8308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hubbard N. L., Huber S. C., Pharr D. M. Sucrose Phosphate Synthase and Acid Invertase as Determinants of Sucrose Concentration in Developing Muskmelon (Cucumis melo L.) Fruits. Plant Physiol. 1989 Dec;91(4):1527–1534. doi: 10.1104/pp.91.4.1527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jang J. C., Sheen J. Sugar sensing in higher plants. Plant Cell. 1994 Nov;6(11):1665–1679. doi: 10.1105/tpc.6.11.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klann E., Yelle S., Bennett A. B. Tomato fruit Acid invertase complementary DNA : nucleotide and deduced amino Acid sequences. Plant Physiol. 1992 May;99(1):351–353. doi: 10.1104/pp.99.1.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Koch K. E. CARBOHYDRATE-MODULATED GENE EXPRESSION IN PLANTS. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):509–540. doi: 10.1146/annurev.arplant.47.1.509. [DOI] [PubMed] [Google Scholar]
  13. Koch K. E., Nolte K. D., Duke E. R., McCarty D. R., Avigne W. T. Sugar Levels Modulate Differential Expression of Maize Sucrose Synthase Genes. Plant Cell. 1992 Jan;4(1):59–69. doi: 10.1105/tpc.4.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Martin T., Frommer W. B., Salanoubat M., Willmitzer L. Expression of an Arabidopsis sucrose synthase gene indicates a role in metabolization of sucrose both during phloem loading and in sink organs. Plant J. 1993 Aug;4(2):367–377. doi: 10.1046/j.1365-313x.1993.04020367.x. [DOI] [PubMed] [Google Scholar]
  15. McCarty D. R., Shaw J. R., Hannah L. C. The cloning, genetic mapping, and expression of the constitutive sucrose synthase locus of maize. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9099–9103. doi: 10.1073/pnas.83.23.9099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miller M. E., Chourey P. S. The Maize Invertase-Deficient miniature-1 Seed Mutation Is Associated with Aberrant Pedicel and Endosperm Development. Plant Cell. 1992 Mar;4(3):297–305. doi: 10.1105/tpc.4.3.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Roitsch T., Bittner M., Godt D. E. Induction of apoplastic invertase of Chenopodium rubrum by D-glucose and a glucose analog and tissue-specific expression suggest a role in sink-source regulation. Plant Physiol. 1995 May;108(1):285–294. doi: 10.1104/pp.108.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shannon J. C. Movement of C-Labeled Assimilates into Kernels of Zea mays L: II. Invertase Activity of the Pedicel and Placento-Chalazal Tissues. Plant Physiol. 1972 Feb;49(2):203–206. doi: 10.1104/pp.49.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sheen J. Metabolic repression of transcription in higher plants. Plant Cell. 1990 Oct;2(10):1027–1038. doi: 10.1105/tpc.2.10.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sung S. J., Xu D. P., Black C. C. Identification of actively filling sucrose sinks. Plant Physiol. 1989 Apr;89(4):1117–1121. doi: 10.1104/pp.89.4.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Thomas B. R., Rodriguez R. L. Metabolite Signals Regulate Gene Expression and Source/Sink Relations in Cereal Seedlings. Plant Physiol. 1994 Dec;106(4):1235–1239. doi: 10.1104/pp.106.4.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Weber H., Borisjuk L., Heim U., Buchner P., Wobus U. Seed coat-associated invertases of fava bean control both unloading and storage functions: cloning of cDNAs and cell type-specific expression. Plant Cell. 1995 Nov;7(11):1835–1846. doi: 10.1105/tpc.7.11.1835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Williamson J. D., Stoop J. M., Massel M. O., Conkling M. A., Pharr D. M. Sequence analysis of a mannitol dehydrogenase cDNA from plants reveals a function for the pathogenesis-related protein ELI3. Proc Natl Acad Sci U S A. 1995 Aug 1;92(16):7148–7152. doi: 10.1073/pnas.92.16.7148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Xu J., Pemberton G. H., Almira E. C., McCarty D. R., Koch K. E. The Ivr 1 gene for invertase in maize. Plant Physiol. 1995 Jul;108(3):1293–1294. doi: 10.1104/pp.108.3.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Zinselmeier C., Westgate M. E., Schussler J. R., Jones R. J. Low Water Potential Disrupts Carbohydrate Metabolism in Maize (Zea mays L.) Ovaries. Plant Physiol. 1995 Feb;107(2):385–391. doi: 10.1104/pp.107.2.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zrenner R., Salanoubat M., Willmitzer L., Sonnewald U. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J. 1995 Jan;7(1):97–107. doi: 10.1046/j.1365-313x.1995.07010097.x. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES