Abstract
The 14-3-3 proteins, originally described as mammalian brain proteins, are ubiquitous in eukaryotes. We isolated an Arabidopsis 14-3-3 gene, designated GRF1-GF14 chi (for general regulatory factor1-G-box factor 14-3-3 homolog isoform chi), and characterized its expression within plant tissues. Sequence comparison of the GRF1-GF14 chi genomic clone with other 14-3-3 proteins demonstrated that the extreme conservation of 14-3-3 residues in several domains is encoded by the first three exons. The highly variable C-terminal domain is encoded by a divergent fourth exon that is unique among 14-3-3 homologs, suggesting that exon shuffling might confer gene-specific functions among the isoforms. The anatomical distribution and developmental expression of the Arabidopsis 14-3-3 protein were examined in transgenic plants carrying a GRF1-GF14 chi promoter-beta-glucuronidase construct. GF14 chi promoter activity was observed in the roots of both seedlings and mature plants. In immature flowers, GF14 chi promoter activity was localized to the buds. However, as the flowers matured, GF14 chi promoter activity was restricted to the stigma, anthers, and pollen. In immature siliques, GF14 chi promoter activity was initially localized to styles and abscission zones but was subsequently observed throughout mature siliques. In situ hybridization demonstrated that GF14 chi mRNA expression was prominent in epidermal tissue of roots, petals, and sepals of flower buds, papillae cells of flowers, siliques, and endosperm of immature seeds. Thus, plant 14-3-3 gene expression exhibits cell- and tissue-specific localization rivaling that observed for 14-3-3 proteins within the mammalian brain.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aitken A. 14-3-3 proteins on the MAP. Trends Biochem Sci. 1995 Mar;20(3):95–97. doi: 10.1016/s0968-0004(00)88971-9. [DOI] [PubMed] [Google Scholar]
- Aitken A., Collinge D. B., van Heusden B. P., Isobe T., Roseboom P. H., Rosenfeld G., Soll J. 14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins. Trends Biochem Sci. 1992 Dec;17(12):498–501. doi: 10.1016/0968-0004(92)90339-b. [DOI] [PubMed] [Google Scholar]
- Aitken A., Ellis C. A., Harris A., Sellers L. A., Toker A. Kinase and neurotransmitters. Nature. 1990 Apr 12;344(6267):594–594. doi: 10.1038/344594a0. [DOI] [PubMed] [Google Scholar]
- Bähring S., Sandig V., Lieber A., Strauss M. Mapping of transcriptional start and capping points by a modified 5' RACE technique. Biotechniques. 1994 May;16(5):807–808. [PubMed] [Google Scholar]
- Chen Z., Fu H., Liu D., Chang P. F., Narasimhan M., Ferl R., Hasegawa P. M., Bressan R. A. A NaCl-regulated plant gene encoding a brain protein homology that activates ADP ribosyltransferase and inhibits protein kinase C. Plant J. 1994 Nov;6(5):729–740. doi: 10.1046/j.1365-313x.1994.6050729.x. [DOI] [PubMed] [Google Scholar]
- Ferl Robert J. 14-3-3 PROTEINS AND SIGNAL TRANSDUCTION. Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47(NaN):49–73. doi: 10.1146/annurev.arplant.47.1.49. [DOI] [PubMed] [Google Scholar]
- Fu H., Xia K., Pallas D. C., Cui C., Conroy K., Narsimhan R. P., Mamon H., Collier R. J., Roberts T. M. Interaction of the protein kinase Raf-1 with 14-3-3 proteins. Science. 1994 Oct 7;266(5182):126–129. doi: 10.1126/science.7939632. [DOI] [PubMed] [Google Scholar]
- Goring D. R., Rothstein S. J. The S-locus receptor kinase gene in a self-incompatible Brassica napus line encodes a functional serine/threonine kinase. Plant Cell. 1992 Oct;4(10):1273–1281. doi: 10.1105/tpc.4.10.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirsch S., Aitken A., Bertsch U., Soll J. A plant homologue to mammalian brain 14-3-3 protein and protein kinase C inhibitor. FEBS Lett. 1992 Jan 20;296(2):222–224. doi: 10.1016/0014-5793(92)80384-s. [DOI] [PubMed] [Google Scholar]
- Hülskamp M., Kopczak S. D., Horejsi T. F., Kihl B. K., Pruitt R. E. Identification of genes required for pollen-stigma recognition in Arabidopsis thaliana. Plant J. 1995 Nov;8(5):703–714. doi: 10.1046/j.1365-313x.1995.08050703.x. [DOI] [PubMed] [Google Scholar]
- Ichimura T., Uchiyama J., Kunihiro O., Ito M., Horigome T., Omata S., Shinkai F., Kaji H., Isobe T. Identification of the site of interaction of the 14-3-3 protein with phosphorylated tryptophan hydroxylase. J Biol Chem. 1995 Dec 1;270(48):28515–28518. doi: 10.1074/jbc.270.48.28515. [DOI] [PubMed] [Google Scholar]
- Isobe T., Hiyane Y., Ichimura T., Okuyama T., Takahashi N., Nakajo S., Nakaya K. Activation of protein kinase C by the 14-3-3 proteins homologous with Exo1 protein that stimulates calcium-dependent exocytosis. FEBS Lett. 1992 Aug 17;308(2):121–124. doi: 10.1016/0014-5793(92)81257-m. [DOI] [PubMed] [Google Scholar]
- Isobe T., Ichimura T., Sunaya T., Okuyama T., Takahashi N., Kuwano R., Takahashi Y. Distinct forms of the protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. J Mol Biol. 1991 Jan 5;217(1):125–132. doi: 10.1016/0022-2836(91)90616-e. [DOI] [PubMed] [Google Scholar]
- Jain R., Gomer R. H., Murtagh J. J., Jr Increasing specificity from the PCR-RACE technique. Biotechniques. 1992 Jan;12(1):58–59. [PubMed] [Google Scholar]
- Kandasamy M. K., Thorsness M. K., Rundle S. J., Goldberg M. L., Nasrallah J. B., Nasrallah M. E. Ablation of Papillar Cell Function in Brassica Flowers Results in the Loss of Stigma Receptivity to Pollination. Plant Cell. 1993 Mar;5(3):263–275. doi: 10.1105/tpc.5.3.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kidou S., Umeda M., Kato A., Uchimiya H. Isolation and characterization of a rice cDNA similar to the bovine brain-specific 14-3-3 protein gene. Plant Mol Biol. 1993 Jan;21(1):191–194. doi: 10.1007/BF00039631. [DOI] [PubMed] [Google Scholar]
- Korthout H. A., de Boer A. H. A fusicoccin binding protein belongs to the family of 14-3-3 brain protein homologs. Plant Cell. 1994 Nov;6(11):1681–1692. doi: 10.1105/tpc.6.11.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu D., Bienkowska J., Petosa C., Collier R. J., Fu H., Liddington R. Crystal structure of the zeta isoform of the 14-3-3 protein. Nature. 1995 Jul 13;376(6536):191–194. doi: 10.1038/376191a0. [DOI] [PubMed] [Google Scholar]
- Lu G., DeLisle A. J., de Vetten N. C., Ferl R. J. Brain proteins in plants: an Arabidopsis homolog to neurotransmitter pathway activators is part of a DNA binding complex. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11490–11494. doi: 10.1073/pnas.89.23.11490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lu G., Rooney M. F., Wu K., Ferl R. J. Five cDNAs encoding Arabidopsis GF14 proteins. Plant Physiol. 1994 Aug;105(4):1459–1460. doi: 10.1104/pp.105.4.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lu G., Sehnke P. C., Ferl R. J. Phosphorylation and calcium binding properties of an Arabidopsis GF14 brain protein homolog. Plant Cell. 1994 Apr;6(4):501–510. doi: 10.1105/tpc.6.4.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lu G., de Vetten N. C., Sehnke P. C., Isobe T., Ichimura T., Fu H., van Heusden G. P., Ferl R. J. A single Arabidopsis GF14 isoform possesses biochemical characteristics of diverse 14-3-3 homologues. Plant Mol Biol. 1994 Jul;25(4):659–667. doi: 10.1007/BF00029604. [DOI] [PubMed] [Google Scholar]
- Luo Z. J., Zhang X. F., Rapp U., Avruch J. Identification of the 14.3.3 zeta domains important for self-association and Raf binding. J Biol Chem. 1995 Oct 6;270(40):23681–23687. doi: 10.1074/jbc.270.40.23681. [DOI] [PubMed] [Google Scholar]
- Martin H., Rostas J., Patel Y., Aitken A. Subcellular localisation of 14-3-3 isoforms in rat brain using specific antibodies. J Neurochem. 1994 Dec;63(6):2259–2265. doi: 10.1046/j.1471-4159.1994.63062259.x. [DOI] [PubMed] [Google Scholar]
- Morgan A., Burgoyne R. D. Exo1 and Exo2 proteins stimulate calcium-dependent exocytosis in permeabilized adrenal chromaffin cells. Nature. 1992 Feb 27;355(6363):833–836. doi: 10.1038/355833a0. [DOI] [PubMed] [Google Scholar]
- Preuss D., Lemieux B., Yen G., Davis R. W. A conditional sterile mutation eliminates surface components from Arabidopsis pollen and disrupts cell signaling during fertilization. Genes Dev. 1993 Jun;7(6):974–985. doi: 10.1101/gad.7.6.974. [DOI] [PubMed] [Google Scholar]
- Reuther G. W., Fu H., Cripe L. D., Collier R. J., Pendergast A. M. Association of the protein kinases c-Bcr and Bcr-Abl with proteins of the 14-3-3 family. Science. 1994 Oct 7;266(5182):129–133. doi: 10.1126/science.7939633. [DOI] [PubMed] [Google Scholar]
- Rooney M. F., Ferl R. J. Sequences of three Arabidopsis general regulatory factor genes encoding GF14 (14-3-3) proteins. Plant Physiol. 1995 Jan;107(1):283–284. doi: 10.1104/pp.107.1.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roseboom P. H., Weller J. L., Babila T., Aitken A., Sellers L. A., Moffett J. R., Namboodiri M. A., Klein D. C. Cloning and characterization of the epsilon and zeta isoforms of the 14-3-3 proteins. DNA Cell Biol. 1994 Jun;13(6):629–640. doi: 10.1089/dna.1994.13.629. [DOI] [PubMed] [Google Scholar]
- Roth D., Morgan A., Martin H., Jones D., Martens G. J., Aitken A., Burgoyne R. D. Characterization of 14-3-3 proteins in adrenal chromaffin cells and demonstration of isoform-specific phospholipid binding. Biochem J. 1994 Jul 1;301(Pt 1):305–310. doi: 10.1042/bj3010305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Swanson K. D., Ganguly R. Characterization of a Drosophila melanogaster gene similar to the mammalian genes encoding the tyrosine/tryptophan hydroxylase activator and protein kinase C inhibitor proteins. Gene. 1992 Apr 15;113(2):183–190. doi: 10.1016/0378-1119(92)90394-5. [DOI] [PubMed] [Google Scholar]
- Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watanabe M., Isobe T., Ichimura T., Kuwano R., Takahashi Y., Kondo H., Inoue Y. Molecular cloning of rat cDNAs for the zeta and theta subtypes of 14-3-3 protein and differential distributions of their mRNAs in the brain. Brain Res Mol Brain Res. 1994 Aug;25(1-2):113–121. doi: 10.1016/0169-328x(94)90285-2. [DOI] [PubMed] [Google Scholar]
- Watanabe M., Isobe T., Okuyama T., Ichimura T., Kuwano R., Takahashi Y., Kondo H. Molecular cloning of cDNA to rat 14-3-3 eta chain polypeptide and the neuronal expression of the mRNA in the central nervous system. Brain Res Mol Brain Res. 1991 May;10(2):151–158. doi: 10.1016/0169-328x(91)90105-7. [DOI] [PubMed] [Google Scholar]
- Xiao B., Smerdon S. J., Jones D. H., Dodson G. G., Soneji Y., Aitken A., Gamblin S. J. Structure of a 14-3-3 protein and implications for coordination of multiple signalling pathways. Nature. 1995 Jul 13;376(6536):188–191. doi: 10.1038/376188a0. [DOI] [PubMed] [Google Scholar]
- Zupan L. A., Steffens D. L., Berry C. A., Landt M., Gross R. W. Cloning and expression of a human 14-3-3 protein mediating phospholipolysis. Identification of an arachidonoyl-enzyme intermediate during catalysis. J Biol Chem. 1992 May 5;267(13):8707–8710. [PubMed] [Google Scholar]
- de Vetten N. C., Ferl R. J. Two genes encoding GF14 (14-3-3) proteins in Zea mays. Structure, expression, and potential regulation by the G-box binding complex. Plant Physiol. 1994 Dec;106(4):1593–1604. doi: 10.1104/pp.106.4.1593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Vetten N. C., Lu G., Feri R. J. A maize protein associated with the G-box binding complex has homology to brain regulatory proteins. Plant Cell. 1992 Oct;4(10):1295–1307. doi: 10.1105/tpc.4.10.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Heusden G. P., Griffiths D. J., Ford J. C., Chin-A-Woeng T. F., Schrader P. A., Carr A. M., Steensma H. Y. The 14-3-3 proteins encoded by the BMH1 and BMH2 genes are essential in the yeast Saccharomyces cerevisiae and can be replaced by a plant homologue. Eur J Biochem. 1995 Apr 1;229(1):45–53. [PubMed] [Google Scholar]