Abstract
Cuticular waxes are complex mixtures of very long chain fatty acids and their derivatives that cover plant surfaces. Mutants of the ECERIFERUM2 (cer2) gene of Arabidopsis condition bright green stems and siliques, indicative of the relatively low abundance of the cuticular wax crystals that comprise the wax bloom on wild-type plants. We cloned the CER2 gene via chromosome walking. Three lines of evidence establish that the cloned sequence represents the CER2 gene: (1) this sequence is capable of complementing the cer2 mutant phenotype in transgenic plants; (2) the corresponding DNA sequence isolated from plants homozygous for the cer2-2 mutant allele contains a sequence polymorphism that generates a premature stop codon; and (3) the deduced CER2 protein sequence exhibits sequence similarity to that of a maize gene (glossy2) that also is involved in cuticular wax accumulation. The CER2 gene encodes a novel protein with a predicted mass of 47 kD. We studied the expression pattern of the CER2 gene by in situ hybridization and analysis of transgenic Arabidopsis plants carrying a CER2-beta-glucuronidase gene fusion that includes 1.0 kb immediately upstream of CER2 and 0.2 kb of CER2 coding sequences. These studies demonstrate that the CER2 gene is expressed in an organ- and tissue-specific manner; CER2 is expressed at high levels only in the epidermis of young siliques and stems. This finding is consistent with the visible phenotype associated with mutants of the CER2 gene. Hence, the 1.2-kb fragment of the CER2 gene used to construct the CER2-beta-glucuronidase gene fusion includes all of the genetic information required for the epidermis-specific accumulation of CER2 mRNA.
Full Text
The Full Text of this article is available as a PDF (2.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agrawal V. P., Lessire R., Stumpf P. K. Biosynthesis of very long chain fatty acids in microsomes from epidermal cells of Allium porrum L. Arch Biochem Biophys. 1984 May 1;230(2):580–589. doi: 10.1016/0003-9861(84)90438-7. [DOI] [PubMed] [Google Scholar]
- Agrawal V. P., Stumpf P. K. Characterization and solubilization of an acyl chain elongation system in microsomes of leek epidermal cells. Arch Biochem Biophys. 1985 Jul;240(1):154–165. doi: 10.1016/0003-9861(85)90018-9. [DOI] [PubMed] [Google Scholar]
- Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
- Burke D. T., Carle G. F., Olson M. V. Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science. 1987 May 15;236(4803):806–812. doi: 10.1126/science.3033825. [DOI] [PubMed] [Google Scholar]
- Cheesbrough T. M., Kolattukudy P. E. Alkane biosynthesis by decarbonylation of aldehydes catalyzed by a particulate preparation from Pisum sativum. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6613–6617. doi: 10.1073/pnas.81.21.6613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creusot F., Fouilloux E., Dron M., Lafleuriel J., Picard G., Billault A., Le Paslier D., Cohen D., Chabouté M. E., Durr A. The CIC library: a large insert YAC library for genome mapping in Arabidopsis thaliana. Plant J. 1995 Nov;8(5):763–770. doi: 10.1046/j.1365-313x.1995.08050763.x. [DOI] [PubMed] [Google Scholar]
- Dean C., Elzen P., Tamaki S., Dunsmuir P., Bedbrook J. Differential expression of the eight genes of the petunia ribulose bisphosphate carboxylase small subunit multi-gene family. EMBO J. 1985 Dec 1;4(12):3055–3061. doi: 10.1002/j.1460-2075.1985.tb04045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans M. M., Passas H. J., Poethig R. S. Heterochronic effects of glossy15 mutations on epidermal cell identity in maize. Development. 1994 Jul;120(7):1971–1981. doi: 10.1242/dev.120.7.1971. [DOI] [PubMed] [Google Scholar]
- Evenson K. J., Post-Beittenmiller D. Fatty Acid-Elongating Activity in Rapidly Expanding Leek Epidermis. Plant Physiol. 1995 Oct;109(2):707–716. doi: 10.1104/pp.109.2.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grill E., Somerville C. Construction and characterization of a yeast artificial chromosome library of Arabidopsis which is suitable for chromosome walking. Mol Gen Genet. 1991 May;226(3):484–490. doi: 10.1007/BF00260662. [DOI] [PubMed] [Google Scholar]
- James D. W., Jr, Lim E., Keller J., Plooy I., Ralston E., Dooner H. K. Directed tagging of the Arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator. Plant Cell. 1995 Mar;7(3):309–319. doi: 10.1105/tpc.7.3.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jenks M. A., Tuttle H. A., Eigenbrode S. D., Feldmann K. A. Leaf Epicuticular Waxes of the Eceriferum Mutants in Arabidopsis. Plant Physiol. 1995 May;108(1):369–377. doi: 10.1104/pp.108.1.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konieczny A., Ausubel F. M. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993 Aug;4(2):403–410. doi: 10.1046/j.1365-313x.1993.04020403.x. [DOI] [PubMed] [Google Scholar]
- Lessire R., Stumpe P. K. Nature of the Fatty Acid Synthetase Systems in Parenchymal and Epidermal Cells of Allium porrum L. Leaves. Plant Physiol. 1983 Nov;73(3):614–618. doi: 10.1104/pp.73.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu D., Post-Beittenmiller D. Discovery of an epidermal stearoyl-acyl carrier protein thioesterase. Its potential role in wax biosynthesis. J Biol Chem. 1995 Jul 14;270(28):16962–16969. doi: 10.1074/jbc.270.28.16962. [DOI] [PubMed] [Google Scholar]
- Moose S. P., Sisco P. H. Glossy15 Controls the Epidermal Juvenile-to-Adult Phase Transition in Maize. Plant Cell. 1994 Oct;6(10):1343–1355. doi: 10.1105/tpc.6.10.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakai K., Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics. 1992 Dec;14(4):897–911. doi: 10.1016/S0888-7543(05)80111-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Negruk V., Yang P., Subramanian M., McNevin J. P., Lemieux B. Molecular cloning and characterization of the CER2 gene of Arabidopsis thaliana. Plant J. 1996 Feb;9(2):137–145. doi: 10.1046/j.1365-313x.1996.09020137.x. [DOI] [PubMed] [Google Scholar]
- Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A., Allard R. W. Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A. 1984 Dec;81(24):8014–8018. doi: 10.1073/pnas.81.24.8014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt R., West J., Love K., Lenehan Z., Lister C., Thompson H., Bouchez D., Dean C. Physical map and organization of Arabidopsis thaliana chromosome 4. Science. 1995 Oct 20;270(5235):480–483. doi: 10.1126/science.270.5235.480. [DOI] [PubMed] [Google Scholar]
- Tacke E., Korfhage C., Michel D., Maddaloni M., Motto M., Lanzini S., Salamini F., Döring H. P. Transposon tagging of the maize Glossy2 locus with the transposable element En/Spm. Plant J. 1995 Dec;8(6):907–917. doi: 10.1046/j.1365-313x.1995.8060907.x. [DOI] [PubMed] [Google Scholar]
- Voytas D. F., Konieczny A., Cummings M. P., Ausubel F. M. The structure, distribution and evolution of the Ta1 retrotransposable element family of Arabidopsis thaliana. Genetics. 1990 Nov;126(3):713–721. doi: 10.1093/genetics/126.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward E. R., Jen G. C. Isolation of single-copy-sequence clones from a yeast artificial chromosome library of randomly-sheared Arabidopsis thaliana DNA. Plant Mol Biol. 1990 Apr;14(4):561–568. doi: 10.1007/BF00027501. [DOI] [PubMed] [Google Scholar]
- Wetzel C. M., Jiang C. Z., Meehan L. J., Voytas D. F., Rodermel S. R. Nuclear-organelle interactions: the immutans variegation mutant of Arabidopsis is plastid autonomous and impaired in carotenoid biosynthesis. Plant J. 1994 Aug;6(2):161–175. doi: 10.1046/j.1365-313x.1994.6020161.x. [DOI] [PubMed] [Google Scholar]