Abstract
It has been generally assumed that the [alpha]-(1->4)-linked and [alpha]-(1->6)-branched glucans of starch are generated by the coordinated action of elongation (starch synthases) and branching enzymes. We have identified a novel Chlamydomonas locus (STA7) that when defective leads to a wipeout of starch and its replacement by a small amount of glycogen-like material. Our efforts to understand the enzymological basis of this phenotype have led us to determine the selective disappearance of an 88-kD starch hydrolytic activity. We further demonstrate that this enzyme is a debranching enzyme. Cleavage of the [alpha]-(1->6) linkage in a branched precursor of amylopectin (preamylopectin) has provided us with the ground rules for understanding starch biosynthesis in plants. Therefore, we propose that amylopectin clusters are synthesized by a discontinuous mechanism involving a highly specific glucan trimming mechanism.
Full Text
The Full Text of this article is available as a PDF (2.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Black R. C., Loerch J. D., McArdle F. J., Creech R. G. Genetic interactions affecting maize phytoglycogen and the phytoglycogen-forming branching enzyme. Genetics. 1966 Apr;53(4):661–668. doi: 10.1093/genetics/53.4.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyer C. D., Preiss J. Multiple forms of starch branching enzyme of maize: evidence for independent genetic control. Biochem Biophys Res Commun. 1978 Jan 13;80(1):169–175. doi: 10.1016/0006-291x(78)91119-1. [DOI] [PubMed] [Google Scholar]
- Caspar T., Huber S. C., Somerville C. Alterations in Growth, Photosynthesis, and Respiration in a Starchless Mutant of Arabidopsis thaliana (L.) Deficient in Chloroplast Phosphoglucomutase Activity. Plant Physiol. 1985 Sep;79(1):11–17. doi: 10.1104/pp.79.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delrue B., Fontaine T., Routier F., Decq A., Wieruszeski J. M., Van Den Koornhuyse N., Maddelein M. L., Fournet B., Ball S. Waxy Chlamydomonas reinhardtii: monocellular algal mutants defective in amylose biosynthesis and granule-bound starch synthase activity accumulate a structurally modified amylopectin. J Bacteriol. 1992 Jun;174(11):3612–3620. doi: 10.1128/jb.174.11.3612-3620.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ERLANDER S. R. A proposed mechanism for the synthesis of starch from glycogen. Enzymologia. 1958 Jun 30;19(5):273–283. [PubMed] [Google Scholar]
- Fontaine T., D'Hulst C., Maddelein M. L., Routier F., Pépin T. M., Decq A., Wieruszeski J. M., Delrue B., Van den Koornhuyse N., Bossu J. P. Toward an understanding of the biogenesis of the starch granule. Evidence that Chlamydomonas soluble starch synthase II controls the synthesis of intermediate size glucans of amylopectin. J Biol Chem. 1993 Aug 5;268(22):16223–16230. [PubMed] [Google Scholar]
- Gabriel O., Gersten D. M. Staining for enzymatic activity after gel electrophoresis, I. Anal Biochem. 1992 May 15;203(1):1–21. doi: 10.1016/0003-2697(92)90036-7. [DOI] [PubMed] [Google Scholar]
- Guan H. P., Preiss J. Differentiation of the Properties of the Branching Isozymes from Maize (Zea mays). Plant Physiol. 1993 Aug;102(4):1269–1273. doi: 10.1104/pp.102.4.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanson K. R., McHale N. A. A Starchless Mutant of Nicotiana sylvestris Containing a Modified Plastid Phosphoglucomutase. Plant Physiol. 1988 Nov;88(3):838–844. doi: 10.1104/pp.88.3.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iglesias A. A., Charng Y. Y., Ball S., Preiss J. Characterization of the kinetic, regulatory, and structural properties of ADP-glucose pyrophosphorylase from Chlamydomonas reinhardtii. Plant Physiol. 1994 Apr;104(4):1287–1294. doi: 10.1104/pp.104.4.1287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- James M. G., Robertson D. S., Myers A. M. Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell. 1995 Apr;7(4):417–429. doi: 10.1105/tpc.7.4.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kakefuda G., Duke S. H. Electrophoretic transfer as a technique for the detection and identification of plant amylolytic enzymes in polyacrylamide gels. Plant Physiol. 1984 May;75(1):278–280. doi: 10.1104/pp.75.1.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kindle K. L. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A. 1990 Feb;87(3):1228–1232. doi: 10.1073/pnas.87.3.1228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lacks S. A., Springhorn S. S. Renaturation of enzymes after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. J Biol Chem. 1980 Aug 10;255(15):7467–7473. [PubMed] [Google Scholar]
- Lavintman N. The formation of branched glucans in sweet corn. Arch Biochem Biophys. 1966 Sep 26;116(1):1–8. doi: 10.1016/0003-9861(66)90004-x. [DOI] [PubMed] [Google Scholar]
- Libessart N., Maddelein M. L., Koornhuyse NVd., Decq A., Delrue B., Mouille G., D'Hulst C., Ball S. Storage, Photosynthesis, and Growth: The Conditional Nature of Mutations Affecting Starch Synthesis and Structure in Chlamydomonas. Plant Cell. 1995 Aug;7(8):1117–1127. doi: 10.1105/tpc.7.8.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin T. P., Caspar T., Somerville C., Preiss J. Isolation and Characterization of a Starchless Mutant of Arabidopsis thaliana (L.) Heynh Lacking ADPglucose Pyrophosphorylase Activity. Plant Physiol. 1988 Apr;86(4):1131–1135. doi: 10.1104/pp.86.4.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maddelein M. L., Libessart N., Bellanger F., Delrue B., D'Hulst C., Van den Koornhuyse N., Fontaine T., Wieruszeski J. M., Decq A., Ball S. Toward an understanding of the biogenesis of the starch granule. Determination of granule-bound and soluble starch synthase functions in amylopectin synthesis. J Biol Chem. 1994 Oct 7;269(40):25150–25157. [PubMed] [Google Scholar]
- Müller-Röber B., Sonnewald U., Willmitzer L. Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J. 1992 Apr;11(4):1229–1238. doi: 10.1002/j.1460-2075.1992.tb05167.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakamura Y., Umemoto T., Ogata N., Kuboki Y., Yano M., Sasaki T. Starch debranching enzyme (R-enzyme or pullulanase) from developing rice endosperm: purification, cDNA and chromosomal localization of the gene. Planta. 1996;199(2):209–218. doi: 10.1007/BF00196561. [DOI] [PubMed] [Google Scholar]
- Pan D., Nelson O. E. A debranching enzyme deficiency in endosperms of the sugary-1 mutants of maize. Plant Physiol. 1984 Feb;74(2):324–328. doi: 10.1104/pp.74.2.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tolmasky D. S., Krisman C. R. The degree of branching in (alpha 1,4)-(alpha 1,6)-linked glucopolysaccharides is dependent on intrinsic properties of the branching enzymes. Eur J Biochem. 1987 Oct 15;168(2):393–397. doi: 10.1111/j.1432-1033.1987.tb13432.x. [DOI] [PubMed] [Google Scholar]
- Van den Koornhuyse N., Libessart N., Delrue B., Zabawinski C., Decq A., Iglesias A., Carton A., Preiss J., Ball S. Control of starch composition and structure through substrate supply in the monocellular alga Chlamydomonas reinhardtii. J Biol Chem. 1996 Jul 5;271(27):16281–16287. doi: 10.1074/jbc.271.27.16281. [DOI] [PubMed] [Google Scholar]