Abstract
A yeast mutant lacking SHR3, a protein specifically required for correct targeting of plasma membrane amino acid permeases, was used to study the targeting of plant transporters and as a tool to isolate new SHR3-independent amino acid transporters. For this purpose, an shr3 mutant was transformed with an Arabidopsis cDNA library. Thirty-four clones were capable of growth under selective conditions, but none showed homology with SHR3. However, genes encoding eight different amino acid transporters belonging to three different transporter families were isolated. Five of these are members of the general amino acid permease (AAP) gene family, one is a member of the NTR family, encoding an oligopeptide transporter, and two belong to a new class of transporter genes. A functional analysis of the latter two genes revealed that they encode specific proline transporters (ProT) that are distantly related to the AAP gene family. ProT1 was found to be expressed in all organs, but highest levels were found in roots, stems, and flowers. Expression in flowers was highest in the floral stalk phloem that enters the carpels and was downregulated after fertilization, indicating a specific role in supplying the ovules with proline. ProT2 transcripts were found ubiquitously throughout the plant, but expression was strongly induced under water or salt stress, implying that ProT2 plays an important role in nitrogen distribution during water stress, unlike members of the AAP gene family whose expression was repressed under the same conditions. These results corroborate the general finding that under water stress, amino acid export is impaired whereas proline export is increased.
Full Text
The Full Text of this article is available as a PDF (2.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bednarek S. Y., Reynolds T. L., Schroeder M., Grabowski R., Hengst L., Gallwitz D., Raikhel N. V. A small GTP-binding protein from Arabidopsis thaliana functionally complements the yeast YPT6 null mutant. Plant Physiol. 1994 Feb;104(2):591–596. doi: 10.1104/pp.104.2.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blum A., Munns R., Passioura J. B., Turner N. C., Sharp R. E., Boyer J. S., Nguyen H. T., Hsiao T. C., Verma DPS., Hong Z. Genetically Engineered Plants Resistant to Soil Drying and Salt Stress: How to Interpret Osmotic Relations? Plant Physiol. 1996 Apr;110(4):1051–1053. doi: 10.1104/pp.110.4.1051. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bohnert H. J., Nelson D. E., Jensen R. G. Adaptations to Environmental Stresses. Plant Cell. 1995 Jul;7(7):1099–1111. doi: 10.1105/tpc.7.7.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Breitkreuz K. E., Shelp B. J. Subcellular Compartmentation of the 4-Aminobutyrate Shunt in Protoplasts from Developing Soybean Cotyledons. Plant Physiol. 1995 May;108(1):99–103. doi: 10.1104/pp.108.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dohmen R. J., Strasser A. W., Höner C. B., Hollenberg C. P. An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast. 1991 Oct;7(7):691–692. doi: 10.1002/yea.320070704. [DOI] [PubMed] [Google Scholar]
- Fischer W. N., Kwart M., Hummel S., Frommer W. B. Substrate specificity and expression profile of amino acid transporters (AAPs) in Arabidopsis. J Biol Chem. 1995 Jul 7;270(27):16315–16320. doi: 10.1074/jbc.270.27.16315. [DOI] [PubMed] [Google Scholar]
- Frommer W. B., Hummel S., Rentsch D. Cloning of an Arabidopsis histidine transporting protein related to nitrate and peptide transporters. FEBS Lett. 1994 Jun 27;347(2-3):185–189. doi: 10.1016/0014-5793(94)00533-8. [DOI] [PubMed] [Google Scholar]
- Frommer W. B., Hummel S., Riesmeier J. W. Expression cloning in yeast of a cDNA encoding a broad specificity amino acid permease from Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5944–5948. doi: 10.1073/pnas.90.13.5944. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frommer W. B., Kwart M., Hirner B., Fischer W. N., Hummel S., Ninnemann O. Transporters for nitrogenous compounds in plants. Plant Mol Biol. 1994 Dec;26(5):1651–1670. doi: 10.1007/BF00016495. [DOI] [PubMed] [Google Scholar]
- Grenson M., Hennaut C. Mutation affecting activity of several distinct amino acid transport systems in Saccharomyces cerevisiae. J Bacteriol. 1971 Feb;105(2):477–482. doi: 10.1128/jb.105.2.477-482.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heineke D., Sonnewald U., Büssis D., Günter G., Leidreiter K., Wilke I., Raschke K., Willmitzer L., Heldt H. W. Apoplastic expression of yeast-derived invertase in potato : effects on photosynthesis, leaf solute composition, water relations, and tuber composition. Plant Physiol. 1992 Sep;100(1):301–308. doi: 10.1104/pp.100.1.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jauniaux J. C., Vandenbol M., Vissers S., Broman K., Grenson M. Nitrogen catabolite regulation of proline permease in Saccharomyces cerevisiae. Cloning of the PUT4 gene and study of PUT4 RNA levels in wild-type and mutant strains. Eur J Biochem. 1987 May 4;164(3):601–606. doi: 10.1111/j.1432-1033.1987.tb11169.x. [DOI] [PubMed] [Google Scholar]
- Kishor PBK., Hong Z., Miao G. H., Hu CAA., Verma DPS. Overexpression of [delta]-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Osmotolerance in Transgenic Plants. Plant Physiol. 1995 Aug;108(4):1387–1394. doi: 10.1104/pp.108.4.1387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Lee H. I., Gal S., Newman T. C., Raikhel N. V. The Arabidopsis endoplasmic reticulum retention receptor functions in yeast. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11433–11437. doi: 10.1073/pnas.90.23.11433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCusker J. H., Haber J. E. Mutations in Saccharomyces cerevisiae which confer resistance to several amino acid analogs. Mol Cell Biol. 1990 Jun;10(6):2941–2949. doi: 10.1128/mcb.10.6.2941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milpetz F., Argos P., Persson B. TMAP: a new email and WWW service for membrane-protein structural predictions. Trends Biochem Sci. 1995 May;20(5):204–205. doi: 10.1016/s0968-0004(00)89009-x. [DOI] [PubMed] [Google Scholar]
- Minet M., Dufour M. E., Lacroute F. Complementation of Saccharomyces cerevisiae auxotrophic mutants by Arabidopsis thaliana cDNAs. Plant J. 1992 May;2(3):417–422. doi: 10.1111/j.1365-313x.1992.00417.x. [DOI] [PubMed] [Google Scholar]
- Murray M. G., Thompson W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980 Oct 10;8(19):4321–4325. doi: 10.1093/nar/8.19.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelissen B., Mordant P., Jonniaux J. L., De Wachter R., Goffeau A. Phylogenetic classification of the major superfamily of membrane transport facilitators, as deduced from yeast genome sequencing. FEBS Lett. 1995 Dec 18;377(2):232–236. doi: 10.1016/0014-5793(95)01380-6. [DOI] [PubMed] [Google Scholar]
- Rentsch D., Laloi M., Rouhara I., Schmelzer E., Delrot S., Frommer W. B. NTR1 encodes a high affinity oligopeptide transporter in Arabidopsis. FEBS Lett. 1995 Aug 21;370(3):264–268. doi: 10.1016/0014-5793(95)00853-2. [DOI] [PubMed] [Google Scholar]
- Sauer N., Stadler R. A sink-specific H+/monosaccharide co-transporter from Nicotiana tabacum: cloning and heterologous expression in baker's yeast. Plant J. 1993 Oct;4(4):601–610. doi: 10.1046/j.1365-313x.1993.04040601.x. [DOI] [PubMed] [Google Scholar]
- Savouré A., Jaoua S., Hua X. J., Ardiles W., Van Montagu M., Verbruggen N. Isolation, characterization, and chromosomal location of a gene encoding the delta 1-pyrroline-5-carboxylate synthetase in Arabidopsis thaliana. FEBS Lett. 1995 Sep 18;372(1):13–19. doi: 10.1016/0014-5793(95)00935-3. [DOI] [PubMed] [Google Scholar]
- Schmelzer E., Kruger-Lebus S., Hahlbrock K. Temporal and Spatial Patterns of Gene Expression around Sites of Attempted Fungal Infection in Parsley Leaves. Plant Cell. 1989 Oct;1(10):993–1001. doi: 10.1105/tpc.1.10.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaner D. L., Boyer J. S. Nitrate Reductase Activity in Maize (Zea mays L.) Leaves: II. Regulation by Nitrate Flux at Low Leaf Water Potential. Plant Physiol. 1976 Oct;58(4):505–509. doi: 10.1104/pp.58.4.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Surdin Y., Sly W., Sire J., Bordes A. M., Robichon-Szulmajster H. Propriétés et contrôle génétique du système d'accumulation des acides aminés chez Saccharomyces cerevisiae. Biochim Biophys Acta. 1965 Oct 18;107(3):546–566. [PubMed] [Google Scholar]
- Tanaka J., Fink G. R. The histidine permease gene (HIP1) of Saccharomyces cerevisiae. Gene. 1985;38(1-3):205–214. doi: 10.1016/0378-1119(85)90219-7. [DOI] [PubMed] [Google Scholar]
- Tarczynski M. C., Jensen R. G., Bohnert H. J. Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science. 1993 Jan 22;259(5094):508–510. doi: 10.1126/science.259.5094.508. [DOI] [PubMed] [Google Scholar]
- Tully R. E., Hanson A. D., Nelsen C. E. Proline Accumulation in Water-stressed Barley Leaves in Relation to Translocation and the Nitrogen Budget. Plant Physiol. 1979 Mar;63(3):518–523. doi: 10.1104/pp.63.3.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verbruggen N., Villarroel R., Van Montagu M. Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol. 1993 Nov;103(3):771–781. doi: 10.1104/pp.103.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Väisänen E., Sopanen T. Uptake of proline by the scutellum of germinating barley grain. Plant Physiol. 1986 Apr;80(4):902–907. doi: 10.1104/pp.80.4.902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walton E. F., Clark C. J., Boldingh H. L. Effect of Hydrogen Cyanamide on Amino Acid Profiles in Kiwifruit Buds during Budbreak. Plant Physiol. 1991 Nov;97(3):1256–1259. doi: 10.1104/pp.97.3.1256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welters P., Takegawa K., Emr S. D., Chrispeels M. J. AtVPS34, a phosphatidylinositol 3-kinase of Arabidopsis thaliana, is an essential protein with homology to a calcium-dependent lipid binding domain. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11398–11402. doi: 10.1073/pnas.91.24.11398. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshiba Y., Kiyosue T., Katagiri T., Ueda H., Mizoguchi T., Yamaguchi-Shinozaki K., Wada K., Harada Y., Shinozaki K. Correlation between the induction of a gene for delta 1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J. 1995 May;7(5):751–760. doi: 10.1046/j.1365-313x.1995.07050751.x. [DOI] [PubMed] [Google Scholar]