Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1996 Sep;8(9):1641–1650. doi: 10.1105/tpc.8.9.1641

Two members of the thioredoxin-h family interact with the kinase domain of a Brassica S locus receptor kinase.

M S Bower 1, D D Matias 1, E Fernandes-Carvalho 1, M Mazzurco 1, T Gu 1, S J Rothstein 1, D R Goring 1
PMCID: PMC161304  PMID: 8837514

Abstract

To determine potential targets of the S locus receptor kinase (SRK) during the Brassica self-incompatibility response, a yeast two-hybrid library was screened with the SRK-910 protein kinase domain. Two thioredoxin-h-like clones, THL-1 and THL-2, were found to interact specifically with the SRK-910 protein kinase domain and not to interact with the protein kinase domains from the Arabidopsis receptor-like protein kinases (RLK) RLK4 and RLK5. The interaction between THL-1 and the SRK-910 protein kinase domain was confirmed using coimmunoprecipitation experiments with fusion proteins produced in Escherichia coli. THL-1 has thioredoxin activity based on an insulin reduction assay, and THL-1 is weakly phosphorylated by the SRK-910 protein kinase domain. THL-1 and THL-2 are both expressed in a variety of tissues but show some differences in steady state mRNA levels, with THL-2 being preferentially expressed in floral tissues. This indicates a more general biological function for these thioredoxins in addition to a potential role as effector molecules in the self-incompatibility signal cascade.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyes D. C., Nasrallah J. B. An anther-specific gene encoded by an S locus haplotype of Brassica produces complementary and differentially regulated transcripts. Plant Cell. 1995 Aug;7(8):1283–1294. doi: 10.1105/tpc.7.8.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brugidou C., Marty I., Chartier Y., Meyer Y. The Nicotiana tabacum genome encodes two cytoplasmic thioredoxin genes which are differently expressed. Mol Gen Genet. 1993 Apr;238(1-2):285–293. doi: 10.1007/BF00279557. [DOI] [PubMed] [Google Scholar]
  3. Buchanan B. B. Regulation of CO2 assimilation in oxygenic photosynthesis: the ferredoxin/thioredoxin system. Perspective on its discovery, present status, and future development. Arch Biochem Biophys. 1991 Jul;288(1):1–9. doi: 10.1016/0003-9861(91)90157-e. [DOI] [PubMed] [Google Scholar]
  4. Carrera A. C., Alexandrov K., Roberts T. M. The conserved lysine of the catalytic domain of protein kinases is actively involved in the phosphotransfer reaction and not required for anchoring ATP. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):442–446. doi: 10.1073/pnas.90.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohen G. B., Ren R., Baltimore D. Modular binding domains in signal transduction proteins. Cell. 1995 Jan 27;80(2):237–248. doi: 10.1016/0092-8674(95)90406-9. [DOI] [PubMed] [Google Scholar]
  6. Da Rocha P. S., Bertrand H. Structure and comparative analysis of the rDNA intergenic spacer of Brassica rapa. Implications for the function and evolution of the Cruciferae spacer. Eur J Biochem. 1995 Apr 15;229(2):550–557. doi: 10.1111/j.1432-1033.1995.tb20497.x. [DOI] [PubMed] [Google Scholar]
  7. Delorme V., Giranton J. L., Hatzfeld Y., Friry A., Heizmann P., Ariza M. J., Dumas C., Gaude T., Cock J. M. Characterization of the S locus genes, SLG and SRK, of the Brassica S3 haplotype: identification of a membrane-localized protein encoded by the S locus receptor kinase gene. Plant J. 1995 Mar;7(3):429–440. doi: 10.1046/j.1365-313x.1995.7030429.x. [DOI] [PubMed] [Google Scholar]
  8. Doughty J., Hedderson F., McCubbin A., Dickinson H. Interaction between a coating-borne peptide of the Brassica pollen grain and stigmatic S (self-incompatibility)-locus-specific glycoproteins. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):467–471. doi: 10.1073/pnas.90.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fantl W. J., Johnson D. E., Williams L. T. Signalling by receptor tyrosine kinases. Annu Rev Biochem. 1993;62:453–481. doi: 10.1146/annurev.bi.62.070193.002321. [DOI] [PubMed] [Google Scholar]
  10. Foote H. C., Ride J. P., Franklin-Tong V. E., Walker E. A., Lawrence M. J., Franklin F. C. Cloning and expression of a distinctive class of self-incompatibility (S) gene from Papaver rhoeas L. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2265–2269. doi: 10.1073/pnas.91.6.2265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gasdaska P. Y., Oblong J. E., Cotgreave I. A., Powis G. The predicted amino acid sequence of human thioredoxin is identical to that of the autocrine growth factor human adult T-cell derived factor (ADF): thioredoxin mRNA is elevated in some human tumors. Biochim Biophys Acta. 1994 Aug 2;1218(3):292–296. doi: 10.1016/0167-4781(94)90180-5. [DOI] [PubMed] [Google Scholar]
  12. Gietz D., St Jean A., Woods R. A., Schiestl R. H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 1992 Mar 25;20(6):1425–1425. doi: 10.1093/nar/20.6.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Glavin T. L., Goring D. R., Schafer U., Rothstein S. J. Features of the extracellular domain of the S-locus receptor kinase from Brassica. Mol Gen Genet. 1994 Sep 28;244(6):630–637. doi: 10.1007/BF00282753. [DOI] [PubMed] [Google Scholar]
  14. Goring D. R., Banks P., Beversdorf W. D., Rothstein S. J. Use of the polymerase chain reaction to isolate an S-locus glycoprotein cDNA introgressed from Brassica campestris into B. napus ssp. oleifera. Mol Gen Genet. 1992 Aug;234(2):185–192. doi: 10.1007/BF00283838. [DOI] [PubMed] [Google Scholar]
  15. Goring D. R., Glavin T. L., Schafer U., Rothstein S. J. An S receptor kinase gene in self-compatible Brassica napus has a 1-bp deletion. Plant Cell. 1993 May;5(5):531–539. doi: 10.1105/tpc.5.5.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goring D. R., Rothstein S. J. The S-locus receptor kinase gene in a self-incompatible Brassica napus line encodes a functional serine/threonine kinase. Plant Cell. 1992 Oct;4(10):1273–1281. doi: 10.1105/tpc.4.10.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grauschopf U., Winther J. R., Korber P., Zander T., Dallinger P., Bardwell J. C. Why is DsbA such an oxidizing disulfide catalyst? Cell. 1995 Dec 15;83(6):947–955. doi: 10.1016/0092-8674(95)90210-4. [DOI] [PubMed] [Google Scholar]
  18. Grippo J. F., Holmgren A., Pratt W. B. Proof that the endogenous, heat-stable glucocorticoid receptor-activating factor is thioredoxin. J Biol Chem. 1985 Jan 10;260(1):93–97. [PubMed] [Google Scholar]
  19. Heldin C. H. Dimerization of cell surface receptors in signal transduction. Cell. 1995 Jan 27;80(2):213–223. doi: 10.1016/0092-8674(95)90404-2. [DOI] [PubMed] [Google Scholar]
  20. Hiscock S. J., Doughty J., Willis A. C., Dickinson H. G. A 7-kDa pollen coating-borne peptide from Brassica napus interacts with S-locus glycoprotein and S-locus-related glycoprotein. Planta. 1995;196(2):367–374. doi: 10.1007/BF00201397. [DOI] [PubMed] [Google Scholar]
  21. Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem. 1989 Aug 25;264(24):13963–13966. [PubMed] [Google Scholar]
  22. Holmgren A. Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J Biol Chem. 1979 Oct 10;254(19):9627–9632. [PubMed] [Google Scholar]
  23. Huber H. E., Russel M., Model P., Richardson C. C. Interaction of mutant thioredoxins of Escherichia coli with the gene 5 protein of phage T7. The redox capacity of thioredoxin is not required for stimulation of DNA polymerase activity. J Biol Chem. 1986 Nov 15;261(32):15006–15012. [PubMed] [Google Scholar]
  24. Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 1995 Jan 27;80(2):225–236. doi: 10.1016/0092-8674(95)90405-0. [DOI] [PubMed] [Google Scholar]
  25. Jones J. D., Dunsmuir P., Bedbrook J. High level expression of introduced chimaeric genes in regenerated transformed plants. EMBO J. 1985 Oct;4(10):2411–2418. doi: 10.1002/j.1460-2075.1985.tb03949.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kandasamy M. K., Paolillo D. J., Faraday C. D., Nasrallah J. B., Nasrallah M. E. The S-locus specific glycoproteins of Brassica accumulate in the cell wall of developing stigma papillae. Dev Biol. 1989 Aug;134(2):462–472. doi: 10.1016/0012-1606(89)90119-x. [DOI] [PubMed] [Google Scholar]
  27. Li X., Nield J., Hayman D., Langridge P. Cloning a putative self-incompatibility gene from the pollen of the grass Phalaris coerulescens. Plant Cell. 1994 Dec;6(12):1923–1932. doi: 10.1105/tpc.6.12.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Li X., Nield J., Hayman D., Langridge P. Thioredoxin activity in the C terminus of Phalaris S protein. Plant J. 1995 Jul;8(1):133–138. doi: 10.1046/j.1365-313x.1995.08010133.x. [DOI] [PubMed] [Google Scholar]
  29. Marshall C. J. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell. 1995 Jan 27;80(2):179–185. doi: 10.1016/0092-8674(95)90401-8. [DOI] [PubMed] [Google Scholar]
  30. Matthews J. R., Wakasugi N., Virelizier J. L., Yodoi J., Hay R. T. Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res. 1992 Aug 11;20(15):3821–3830. doi: 10.1093/nar/20.15.3821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nasrallah J. B., Stein J. C., Kandasamy M. K., Nasrallah M. E. Signaling the arrest of pollen tube development in self-incompatible plants. Science. 1994 Dec 2;266(5190):1505–1508. doi: 10.1126/science.266.5190.1505. [DOI] [PubMed] [Google Scholar]
  32. Oblong J. E., Berggren M., Gasdaska P. Y., Powis G. Site-directed mutagenesis of active site cysteines in human thioredoxin produces competitive inhibitors of human thioredoxin reductase and elimination of mitogenic properties of thioredoxin. J Biol Chem. 1994 Apr 22;269(16):11714–11720. [PubMed] [Google Scholar]
  33. Powis G., Oblong J. E., Gasdaska P. Y., Berggren M., Hill S. R., Kirkpatrick D. L. The thioredoxin/thioredoxin reductase redox system and control of cell growth. Oncol Res. 1994;6(10-11):539–544. [PubMed] [Google Scholar]
  34. Reith A. D., Ellis C., Lyman S. D., Anderson D. M., Williams D. E., Bernstein A., Pawson T. Signal transduction by normal isoforms and W mutant variants of the Kit receptor tyrosine kinase. EMBO J. 1991 Sep;10(9):2451–2459. doi: 10.1002/j.1460-2075.1991.tb07784.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rivera-Madrid R., Mestres D., Marinho P., Jacquot J. P., Decottignies P., Miginiac-Maslow M., Meyer Y. Evidence for five divergent thioredoxin h sequences in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5620–5624. doi: 10.1073/pnas.92.12.5620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Rundle S. J., Nasrallah M. E., Nasrallah J. B. Effects of Inhibitors of Protein Serine/Threonine Phosphatases on Pollination in Brassica. Plant Physiol. 1993 Dec;103(4):1165–1171. doi: 10.1104/pp.103.4.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Schiestl R. H., Gietz R. D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr Genet. 1989 Dec;16(5-6):339–346. doi: 10.1007/BF00340712. [DOI] [PubMed] [Google Scholar]
  38. Stein J. C., Howlett B., Boyes D. C., Nasrallah M. E., Nasrallah J. B. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8816–8820. doi: 10.1073/pnas.88.19.8816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stein J. C., Nasrallah J. B. A plant receptor-like gene, the S-locus receptor kinase of Brassica oleracea L., encodes a functional serine/threonine kinase. Plant Physiol. 1993 Mar;101(3):1103–1106. doi: 10.1104/pp.101.3.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stone J. M., Collinge M. A., Smith R. D., Horn M. A., Walker J. C. Interaction of a protein phosphatase with an Arabidopsis serine-threonine receptor kinase. Science. 1994 Nov 4;266(5186):793–795. doi: 10.1126/science.7973632. [DOI] [PubMed] [Google Scholar]
  41. Vojtek A. B., Hollenberg S. M., Cooper J. A. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell. 1993 Jul 16;74(1):205–214. doi: 10.1016/0092-8674(93)90307-c. [DOI] [PubMed] [Google Scholar]
  42. Walker J. C. Receptor-like protein kinase genes of Arabidopsis thaliana. Plant J. 1993 Mar;3(3):451–456. doi: 10.1111/j.1365-313x.1993.tb00164.x. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES