Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1996 Nov;8(11):1961–1975. doi: 10.1105/tpc.8.11.1961

Cell-Specific Expression of Mitochondrial Transcripts in Maize Seedlings.

X Q Li 1, M Zhang 1, G G Brown 1
PMCID: PMC161327  PMID: 12239371

Abstract

Although mitochondria are thought to assume crucial and possibly novel physiological functions during male gametogenesis, it is not known to what extent mitochondrial function is necessary for other aspects of plant development or to what degree the expression of plant mitochondrial genes is subject to cell-specific regulation, particularly during vegetative growth. We have used in situ hybridization to show that extensive differences exist in the levels of mitochondrial RNAs (mtRNAs) among different tissues and among different individual cell types within the same organ of maize seedlings. The expression of all examined mtRNAs is enhanced in vascular bundles, particularly in procambium- and xylem-forming cells. Mitochondrial transcript levels correlated highly with cell division activity. For example, in roots, the transcripts are abundant in the dividing cells of the meristem but drop to very low levels in the nondividing cells of the root cap and the meristem quiescent center. By comparison, levels of functional mitochondria, as assessed by rhodamine-123 fluorescence, did not vary greatly among the same group of cells. In shoots, in situ hybridization and blot hybridization revealed differences in the patterns of localization among different mtRNAs. The results indicate that during vegetative growth, mitochondrial gene expression at the transcript level is subject to an unexpected degree of cell-specific regulation and that different controls may operate on different trancripts.

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Conley C. A., Hanson M. R. Tissue-Specific Protein Expression in Plant Mitochondria. Plant Cell. 1994 Jan;6(1):85–91. doi: 10.1105/tpc.6.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. De Paepe R., Forchioni A., Chétrit P., Vedel F. Specific mitochondrial proteins in pollen: presence of an additional ATP synthase beta subunit. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5934–5938. doi: 10.1073/pnas.90.13.5934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dewey R. E., Levings C. S., Timothy D. H. Nucleotide sequence of ATPase subunit 6 gene of maize mitochondria. Plant Physiol. 1985 Nov;79(3):914–919. doi: 10.1104/pp.79.3.914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Finnegan P. M., Brown G. G. Autonomously replicating RNA in mitochondria of maize plants with S-type cytoplasm. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5175–5179. doi: 10.1073/pnas.83.14.5175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Finnegan P. M., Brown G. G. Transcriptional and Post-Transcriptional Regulation of RNA Levels in Maize Mitochondria. Plant Cell. 1990 Jan;2(1):71–83. doi: 10.1105/tpc.2.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fox T. D., Leaver C. J. The Zea mays mitochondrial gene coding cytochrome oxidase subunit II has an intervening sequence and does not contain TGA codons. Cell. 1981 Nov;26(3 Pt 1):315–323. doi: 10.1016/0092-8674(81)90200-2. [DOI] [PubMed] [Google Scholar]
  7. Hanson M. R. Plant mitochondrial mutations and male sterility. Annu Rev Genet. 1991;25:461–486. doi: 10.1146/annurev.ge.25.120191.002333. [DOI] [PubMed] [Google Scholar]
  8. Huang J., Struck F., Matzinger D. F., Levings C. S., 3rd Flower-enhanced expression of a nuclear-encoded mitochondrial respiratory protein is associated with changes in mitochondrion number. Plant Cell. 1994 Mar;6(3):439–448. doi: 10.1105/tpc.6.3.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Isaac P. G., Jones V. P., Leaver C. J. The maize cytochrome c oxidase subunit I gene: sequence, expression and rearrangement in cytoplasmic male sterile plants. EMBO J. 1985 Jul;4(7):1617–1623. doi: 10.1002/j.1460-2075.1985.tb03828.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Monéger F., Mandaron P., Niogret M. F., Freyssinet G., Mache R. Expression of Chloroplast and Mitochondrial Genes during Microsporogenesis in Maize. Plant Physiol. 1992 Jun;99(2):396–400. doi: 10.1104/pp.99.2.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mulligan R. M., Leon P., Walbot V. Transcriptional and posttranscriptional regulation of maize mitochondrial gene expression. Mol Cell Biol. 1991 Jan;11(1):533–543. doi: 10.1128/mcb.11.1.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Shirley B. W., Meagher R. B. A potential role for RNA turnover in the light regulation of plant gene expression: ribulose-1,5-bisphosphate carboxylase small subunit in soybean. Nucleic Acids Res. 1990 Jun 11;18(11):3377–3385. doi: 10.1093/nar/18.11.3377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Singh M., Brown G. G. Characterization of expression of a mitochondrial gene region associated with the Brassica "Polima" CMS: developmental influences. Curr Genet. 1993 Oct;24(4):316–322. doi: 10.1007/BF00336783. [DOI] [PubMed] [Google Scholar]
  14. Singh M., Brown G. G. Suppression of cytoplasmic male sterility by nuclear genes alters expression of a novel mitochondrial gene region. Plant Cell. 1991 Dec;3(12):1349–1362. doi: 10.1105/tpc.3.12.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Smart C. J., Monéger F., Leaver C. J. Cell-specific regulation of gene expression in mitochondria during anther development in sunflower. Plant Cell. 1994 Jun;6(6):811–825. doi: 10.1105/tpc.6.6.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Walker J. L., Oliver D. J. Light-induced increases in the glycine decarboxylase multienzyme complex from pea leaf mitochondria. Arch Biochem Biophys. 1986 Aug 1;248(2):626–638. doi: 10.1016/0003-9861(86)90517-5. [DOI] [PubMed] [Google Scholar]
  17. Witkiewicz H., Bolander M. E., Edwards D. R. Improved design of riboprobes from pBluescript and related vectors for in situ hybridization. Biotechniques. 1993 Mar;14(3):458–463. [PubMed] [Google Scholar]
  18. Young E. G., Hanson M. R. A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated. Cell. 1987 Jul 3;50(1):41–49. doi: 10.1016/0092-8674(87)90660-x. [DOI] [PubMed] [Google Scholar]
  19. Zhang M., Brown G. G. Structure of the maize mitochondrial replicon RNA b and its relationship with other autonomously replicating RNA species. J Mol Biol. 1993 Apr 5;230(3):757–765. doi: 10.1006/jmbi.1993.1198. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES