Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1996 Nov;8(11):1977–1989. doi: 10.1105/tpc.8.11.1977

The MADS domain protein AGL15 localizes to the nucleus during early stages of seed development.

S E Perry 1, K W Nichols 1, D E Fernandez 1
PMCID: PMC161328  PMID: 8953767

Abstract

Little is known about regulatory factors that act during the earliest stages of plant embryogenesis. The MADS domain protein AGL15 (for AGAMOUS-like) is expressed preferentially during embryogenesis and accumulates during early seed development in monocotyledonous and dicotyledonous flowering plants. AGL15-specific antibodies and immunohistochemistry were used to demonstrate that AGL15 accumulates before fertilization in the cytoplasm in the cells of the egg apparatus and moves into the nucleus during early stages of development in the suspensor, embryo, and endosperms. Relatively high levels of AGL15 are present in the nuclei during embryo morphogenesis and until the seeds start to dry in Brassica, maize, and Arabidopsis. AGL15 is associated with the chromosomes during mitosis, and gel mobility shift assays were used to demonstrate that AGL15 binds DNA in a sequence-specific manner. To assess whether AGL15 is likely to play a role in specifying the seed or embryonic phase of development, AGL15 accumulation was examined in Arabidopsis mutants that prematurely exit embryogenesis. lec1-2 mutants show an embryo-specific loss of AGL15 at the transition stage, suggesting that AGL15 interacts with regulators in the leafy cotyledons pathway.

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Breitbart R. E., Liang C. S., Smoot L. B., Laheru D. A., Mahdavi V., Nadal-Ginard B. A fourth human MEF2 transcription factor, hMEF2D, is an early marker of the myogenic lineage. Development. 1993 Aug;118(4):1095–1106. doi: 10.1242/dev.118.4.1095. [DOI] [PubMed] [Google Scholar]
  2. Campbell W. H., Gowri G. Codon usage in higher plants, green algae, and cyanobacteria. Plant Physiol. 1990 Jan;92(1):1–11. doi: 10.1104/pp.92.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Flanagan C. A., Ma H. Spatially and temporally regulated expression of the MADS-box gene AGL2 in wild-type and mutant arabidopsis flowers. Plant Mol Biol. 1994 Oct;26(2):581–595. doi: 10.1007/BF00013745. [DOI] [PubMed] [Google Scholar]
  4. Heck G. R., Perry S. E., Nichols K. W., Fernandez D. E. AGL15, a MADS domain protein expressed in developing embryos. Plant Cell. 1995 Aug;7(8):1271–1282. doi: 10.1105/tpc.7.8.1271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Huang H., Tudor M., Su T., Zhang Y., Hu Y., Ma H. DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation. Plant Cell. 1996 Jan;8(1):81–94. doi: 10.1105/tpc.8.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ingham P. Signal transduction. Dorsal developments. Nature. 1994 Dec 8;372(6506):500–501. doi: 10.1038/372500a0. [DOI] [PubMed] [Google Scholar]
  7. Keith K., Kraml M., Dengler N. G., McCourt P. fusca3: A Heterochronic Mutation Affecting Late Embryo Development in Arabidopsis. Plant Cell. 1994 May;6(5):589–600. doi: 10.1105/tpc.6.5.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Koltunow A. M. Apomixis: Embryo Sacs and Embryos Formed without Meiosis or Fertilization in Ovules. Plant Cell. 1993 Oct;5(10):1425–1437. doi: 10.1105/tpc.5.10.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Li X., Shou W., Kloc M., Reddy B. A., Etkin L. D. The association of Xenopus nuclear factor 7 with subcellular structures is dependent upon phosphorylation and specific domains. Exp Cell Res. 1994 Aug;213(2):473–481. doi: 10.1006/excr.1994.1225. [DOI] [PubMed] [Google Scholar]
  10. Long J. A., Moan E. I., Medford J. I., Barton M. K. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature. 1996 Jan 4;379(6560):66–69. doi: 10.1038/379066a0. [DOI] [PubMed] [Google Scholar]
  11. Lukowitz W., Mayer U., Jürgens G. Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell. 1996 Jan 12;84(1):61–71. doi: 10.1016/s0092-8674(00)80993-9. [DOI] [PubMed] [Google Scholar]
  12. Ma H., Yanofsky M. F., Meyerowitz E. M. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 1991 Mar;5(3):484–495. doi: 10.1101/gad.5.3.484. [DOI] [PubMed] [Google Scholar]
  13. Meinke D. W. A Homoeotic Mutant of Arabidopsis thaliana with Leafy Cotyledons. Science. 1992 Dec 4;258(5088):1647–1650. doi: 10.1126/science.258.5088.1647. [DOI] [PubMed] [Google Scholar]
  14. Meinke D. W., Franzmann L. H., Nickle T. C., Yeung E. C. Leafy Cotyledon Mutants of Arabidopsis. Plant Cell. 1994 Aug;6(8):1049–1064. doi: 10.1105/tpc.6.8.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Montag K., Salamini F., Thompson R. D. ZEMa, a member of a novel group of MADS box genes, is alternatively spliced in maize endosperm. Nucleic Acids Res. 1995 Jun 25;23(12):2168–2177. doi: 10.1093/nar/23.12.2168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nambara E., Keith K., McCourt P., Naito S. Isolation of an internal deletion mutant of the Arabidopsis thaliana ABI3 gene. Plant Cell Physiol. 1994 Apr;35(3):509–513. [PubMed] [Google Scholar]
  17. Neuffer M. G., Sheridan W. F. Defective kernel mutants of maize. I. Genetic and lethality studies. Genetics. 1980 Aug;95(4):929–944. doi: 10.1093/genetics/95.4.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nguyen H. T., Bodmer R., Abmayr S. M., McDermott J. C., Spoerel N. A. D-mef2: a Drosophila mesoderm-specific MADS box-containing gene with a biphasic expression profile during embryogenesis. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7520–7524. doi: 10.1073/pnas.91.16.7520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Passmore S., Elble R., Tye B. K. A protein involved in minichromosome maintenance in yeast binds a transcriptional enhancer conserved in eukaryotes. Genes Dev. 1989 Jul;3(7):921–935. doi: 10.1101/gad.3.7.921. [DOI] [PubMed] [Google Scholar]
  20. Pnueli L., Abu-Abeid M., Zamir D., Nacken W., Schwarz-Sommer Z., Lifschitz E. The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J. 1991 Sep;1(2):255–266. [PubMed] [Google Scholar]
  21. Schwarz-Sommer Z., Huijser P., Nacken W., Saedler H., Sommer H. Genetic Control of Flower Development by Homeotic Genes in Antirrhinum majus. Science. 1990 Nov 16;250(4983):931–936. doi: 10.1126/science.250.4983.931. [DOI] [PubMed] [Google Scholar]
  22. Shevell D. E., Leu W. M., Gillmor C. S., Xia G., Feldmann K. A., Chua N. H. EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell. 1994 Jul 1;77(7):1051–1062. doi: 10.1016/0092-8674(94)90444-8. [DOI] [PubMed] [Google Scholar]
  23. Shiraishi H., Okada K., Shimura Y. Nucleotide sequences recognized by the AGAMOUS MADS domain of Arabidopsis thaliana in vitro. Plant J. 1993 Aug;4(2):385–398. doi: 10.1046/j.1365-313x.1993.04020385.x. [DOI] [PubMed] [Google Scholar]
  24. Sommer H., Beltrán J. P., Huijser P., Pape H., Lönnig W. E., Saedler H., Schwarz-Sommer Z. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 1990 Mar;9(3):605–613. doi: 10.1002/j.1460-2075.1990.tb08152.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Souer E., van Houwelingen A., Kloos D., Mol J., Koes R. The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell. 1996 Apr 19;85(2):159–170. doi: 10.1016/s0092-8674(00)81093-4. [DOI] [PubMed] [Google Scholar]
  26. St Johnston D., Nüsslein-Volhard C. The origin of pattern and polarity in the Drosophila embryo. Cell. 1992 Jan 24;68(2):201–219. doi: 10.1016/0092-8674(92)90466-p. [DOI] [PubMed] [Google Scholar]
  27. Tröbner W., Ramirez L., Motte P., Hue I., Huijser P., Lönnig W. E., Saedler H., Sommer H., Schwarz-Sommer Z. GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 1992 Dec;11(13):4693–4704. doi: 10.1002/j.1460-2075.1992.tb05574.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Vernon D. M., Meinke D. W. Embryogenic transformation of the suspensor in twin, a polyembryonic mutant of Arabidopsis. Dev Biol. 1994 Oct;165(2):566–573. doi: 10.1006/dbio.1994.1276. [DOI] [PubMed] [Google Scholar]
  29. West MAL., Harada J. J. Embryogenesis in Higher Plants: An Overview. Plant Cell. 1993 Oct;5(10):1361–1369. doi: 10.1105/tpc.5.10.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. West MAL., Yee K. M., Danao J., Zimmerman J. L., Fischer R. L., Goldberg R. B., Harada J. J. LEAFY COTYLEDON1 Is an Essential Regulator of Late Embryogenesis and Cotyledon Identity in Arabidopsis. Plant Cell. 1994 Dec;6(12):1731–1745. doi: 10.1105/tpc.6.12.1731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yadegari R., Paiva GRd., Laux T., Koltunow A. M., Apuya N., Zimmerman J. L., Fischer R. L., Harada J. J., Goldberg R. B. Cell Differentiation and Morphogenesis Are Uncoupled in Arabidopsis raspberry Embryos. Plant Cell. 1994 Dec;6(12):1713–1729. doi: 10.1105/tpc.6.12.1713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Yu Y. T., Breitbart R. E., Smoot L. B., Lee Y., Mahdavi V., Nadal-Ginard B. Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev. 1992 Sep;6(9):1783–1798. doi: 10.1101/gad.6.9.1783. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES