Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1996 Dec;8(12):2183–2191. doi: 10.1105/tpc.8.12.2183

CHL1 encodes a component of the low-affinity nitrate uptake system in Arabidopsis and shows cell type-specific expression in roots.

N C Huang 1, C S Chiang 1, N M Crawford 1, Y F Tsay 1
PMCID: PMC161344  PMID: 8989878

Abstract

The Arabidopsis CHL1 (AtNRT1) gene confers sensitivity to the herbicide chlorate and encodes a nitrate-regulated nitrate transporter. However, how CHL1 participates in nitrate uptake in plants is not yet clear. In this study, we examined the in vivo function of CHL1 with in vivo uptake measurements and in situ hybridization experiments. Under most conditions tested, the amount of nitrate uptake by a chl1 deletion mutant was found to be significantly less than that of the wild type. This uptake deficiency was reversed when a CHL1 cDNA clone driven by the cauliflower mosaic virus 35S promoter was expressed in transgenic chl1 plants. Furthermore, tissue-specific expression patterns showed that near the root tip, CHL1 mRNA is found primarily in the epidermis, but further from the root tip, the mRNA is found in the cortex or endodermis. These results are consistent with the involvement of CHL1 in nitrate uptake at different stages of root cell development. A functional analysis in Xenopus oocytes indicated that CHL1 is a low-affinity nitrate transporter with a K(m) value of approximately 8.5 mM for nitrate. This finding is consistent with the chlorate resistance phenotype of chl1 mutants. However, these results do not fit the current model of a single, constitutive component for the low-affinity uptake system. To reconcile this discrepancy and the complex uptake behavior observed, we propose a "two-gene" model for the low-affinity nitrate uptake system of Arabidopsis.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aslam M., Travis R. L., Huffaker R. C. Comparative kinetics and reciprocal inhibition of nitrate and nitrite uptake in roots of uninduced and induced barley (Hordeum vulgare L.) seedlings. Plant Physiol. 1992;99:1124–1133. doi: 10.1104/pp.99.3.1124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cao Y., Anderova M., Crawford N. M., Schroeder J. I. Expression of an outward-rectifying potassium channel from maize mRNA and complementary RNA in Xenopus oocytes. Plant Cell. 1992 Aug;4(8):961–969. doi: 10.1105/tpc.4.8.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crawford N. M., Arst H. N., Jr The molecular genetics of nitrate assimilation in fungi and plants. Annu Rev Genet. 1993;27:115–146. doi: 10.1146/annurev.ge.27.120193.000555. [DOI] [PubMed] [Google Scholar]
  5. Crawford N. M. Nitrate: nutrient and signal for plant growth. Plant Cell. 1995 Jul;7(7):859–868. doi: 10.1105/tpc.7.7.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dolan L., Janmaat K., Willemsen V., Linstead P., Poethig S., Roberts K., Scheres B. Cellular organisation of the Arabidopsis thaliana root. Development. 1993 Sep;119(1):71–84. doi: 10.1242/dev.119.1.71. [DOI] [PubMed] [Google Scholar]
  7. Glass A. D., Shaff J. E., Kochian L. V. Studies of the Uptake of Nitrate in Barley : IV. Electrophysiology. Plant Physiol. 1992 Jun;99(2):456–463. doi: 10.1104/pp.99.2.456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guy M., Zabala G., Filner P. The Kinetics of Chlorate Uptake by XD Tobacco Cells. Plant Physiol. 1988 Mar;86(3):817–821. doi: 10.1104/pp.86.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hole D. J., Emran A. M., Fares Y., Drew M. C. Induction of nitrate transport in maize roots, and kinetics of influx, measured with nitrogen-13. Plant Physiol. 1990 Jun;93(2):642–647. doi: 10.1104/pp.93.2.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kronzucker H. J., Siddiqi M. Y., Glass ADM. Kinetics of NO3- Influx in Spruce. Plant Physiol. 1995 Sep;109(1):319–326. doi: 10.1104/pp.109.1.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lagarde D., Basset M., Lepetit M., Conejero G., Gaymard F., Astruc S., Grignon C. Tissue-specific expression of Arabidopsis AKT1 gene is consistent with a role in K+ nutrition. Plant J. 1996 Feb;9(2):195–203. doi: 10.1046/j.1365-313x.1996.09020195.x. [DOI] [PubMed] [Google Scholar]
  12. Lauter F. R., Ninnemann O., Bucher M., Riesmeier J. W., Frommer W. B. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8139–8144. doi: 10.1073/pnas.93.15.8139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McClure P. R., Kochian L. V., Spanswick R. M., Shaff J. E. Evidence for cotransport of nitrate and protons in maize roots : I. Effects of nitrate on the membrane potential. Plant Physiol. 1990 May;93(1):281–289. doi: 10.1104/pp.93.1.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Odell J. T., Nagy F., Chua N. H. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. 1985 Feb 28-Mar 6Nature. 313(6005):810–812. doi: 10.1038/313810a0. [DOI] [PubMed] [Google Scholar]
  15. Ruiz-Cristin J., Briskin D. P. Characterization of a H+/NO3- symport associated with plasma membrane vesicles of maize roots using 36ClO3- as a radiotracer analog. Arch Biochem Biophys. 1991 Feb 15;285(1):74–82. doi: 10.1016/0003-9861(91)90330-l. [DOI] [PubMed] [Google Scholar]
  16. Saier M. H., Jr Computer-aided analyses of transport protein sequences: gleaning evidence concerning function, structure, biogenesis, and evolution. Microbiol Rev. 1994 Mar;58(1):71–93. doi: 10.1128/mr.58.1.71-93.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Siddiqi M. Y., Glass A. D., Ruth T. J., Rufty T. W. Studies of the Uptake of Nitrate in Barley: I. Kinetics of NO(3) Influx. Plant Physiol. 1990 Aug;93(4):1426–1432. doi: 10.1104/pp.93.4.1426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Song W., Steiner H. Y., Zhang L., Naider F., Stacey G., Becker J. M. Cloning of a second Arabidopsis peptide transport gene. Plant Physiol. 1996 Jan;110(1):171–178. doi: 10.1104/pp.110.1.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. St Johnston D. The intracellular localization of messenger RNAs. Cell. 1995 Apr 21;81(2):161–170. doi: 10.1016/0092-8674(95)90324-0. [DOI] [PubMed] [Google Scholar]
  20. Thayer J. R., Huffaker R. C. Determination of nitrate and nitrite by high-pressure liquid chromatography: comparison with other methods for nitrate determination. Anal Biochem. 1980 Feb;102(1):110–119. doi: 10.1016/0003-2697(80)90325-5. [DOI] [PubMed] [Google Scholar]
  21. Tsay Y. F., Schroeder J. I., Feldmann K. A., Crawford N. M. The herbicide sensitivity gene CHL1 of Arabidopsis encodes a nitrate-inducible nitrate transporter. Cell. 1993 Mar 12;72(5):705–713. doi: 10.1016/0092-8674(93)90399-b. [DOI] [PubMed] [Google Scholar]
  22. Ullrich C. I., Novacky A. J. Extra- and Intracellular pH and Membrane Potential Changes Induced by K, Cl, H(2)PO(4), and NO(3) Uptake and Fusicoccin in Root Hairs of Limnobium stoloniferum. Plant Physiol. 1990 Dec;94(4):1561–1567. doi: 10.1104/pp.94.4.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Valvekens D., Van Montagu M., Van Lijsebettens M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5536–5540. doi: 10.1073/pnas.85.15.5536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Warner R. L., Huffaker R. C. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings. Plant Physiol. 1989;91:947–953. doi: 10.1104/pp.91.3.947. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES