Skip to main content
The Plant Cell logoLink to The Plant Cell
. 1996 Dec;8(12):2223–2234. doi: 10.1105/tpc.8.12.2223

PK12, a plant dual-specificity protein kinase of the LAMMER family, is regulated by the hormone ethylene.

G Sessa 1, V Raz 1, S Savaldi 1, R Fluhr 1
PMCID: PMC161347  PMID: 8989879

Abstract

The ethylene signal is transduced in plant cells via phosphorylation events. To identify protein kinases whose levels of expression are modulated by the plant hormone ethylene, we utilized a differential reverse transcriptase-polymerase chain reaction approach using mRNA extracted from ethylene-treated and untreated tobacco leaves. An ethylene-induced cDNA clone, PK12, encoding a protein kinase, was isolated. PK12 is a new member of the recently defined LAMMER family of protein kinases, which has been identified in mammals, flies, yeasts, and plants. The LAMMER kinases are related to the cell cycle-dependent CDC2-type kinases and are characterized by their similarity at kinase subdomain X. The recombinant PK12 protein autophosphorylates in vitro on serine, threonine, and tyrosine residues, thereby making it a member of the dual-specificity protein kinases. Immunoprecipitation of PK12 from plant extracts and kinase assay revealed that the apparent PK12 activity is rapidly and transiently increased when plants are treated with ethylene. By using in situ hybridization, we detected accumulation of the PK12 transcript in leaves after ethylene treatment and in the untreated flower abscission zone. The tissue in this zone is known to constitutively express ethylene-regulated genes.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali N., Halfter U., Chua N. H. Cloning and biochemical characterization of a plant protein kinase that phosphorylates serine, threonine, and tyrosine. J Biol Chem. 1994 Dec 16;269(50):31626–31629. [PubMed] [Google Scholar]
  2. Allen J. F. How does protein phosphorylation regulate photosynthesis? Trends Biochem Sci. 1992 Jan;17(1):12–17. doi: 10.1016/0968-0004(92)90418-9. [DOI] [PubMed] [Google Scholar]
  3. Anderberg R. J., Walker-Simmons M. K. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinases. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10183–10187. doi: 10.1073/pnas.89.21.10183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bender J., Fink G. R. AFC1, a LAMMER kinase from Arabidopsis thaliana, activates STE12-dependent processes in yeast. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12105–12109. doi: 10.1073/pnas.91.25.12105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boutry M., Chua N. H. A nuclear gene encoding the beta subunit of the mitochondrial ATP synthase in Nicotiana plumbaginifolia. EMBO J. 1985 Sep;4(9):2159–2165. doi: 10.1002/j.1460-2075.1985.tb03910.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Boyle W. J., van der Geer P., Hunter T. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 1991;201:110–149. doi: 10.1016/0076-6879(91)01013-r. [DOI] [PubMed] [Google Scholar]
  7. Brzobohatý B., Moore I., Palme K. Cytokinin metabolism: implications for regulation of plant growth and development. Plant Mol Biol. 1994 Dec;26(5):1483–1497. doi: 10.1007/BF00016486. [DOI] [PubMed] [Google Scholar]
  8. Chang C., Kwok S. F., Bleecker A. B., Meyerowitz E. M. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science. 1993 Oct 22;262(5133):539–544. doi: 10.1126/science.8211181. [DOI] [PubMed] [Google Scholar]
  9. Chang C. The ethylene signal transduction pathway in Arabidopsis: an emerging paradigm? Trends Biochem Sci. 1996 Apr;21(4):129–133. [PubMed] [Google Scholar]
  10. De Bondt H. L., Rosenblatt J., Jancarik J., Jones H. D., Morgan D. O., Kim S. H. Crystal structure of cyclin-dependent kinase 2. Nature. 1993 Jun 17;363(6430):595–602. doi: 10.1038/363595a0. [DOI] [PubMed] [Google Scholar]
  11. Dilworth D. D., McCarrey J. R. Single-step elimination of contaminating DNA prior to reverse transcriptase PCR. PCR Methods Appl. 1992 May;1(4):279–282. doi: 10.1101/gr.1.4.279. [DOI] [PubMed] [Google Scholar]
  12. Duncan P. I., Howell B. W., Marius R. M., Drmanic S., Douville E. M., Bell J. C. Alternative splicing of STY, a nuclear dual specificity kinase. J Biol Chem. 1995 Sep 15;270(37):21524–21531. doi: 10.1074/jbc.270.37.21524. [DOI] [PubMed] [Google Scholar]
  13. Ecker J. R. The ethylene signal transduction pathway in plants. Science. 1995 May 5;268(5211):667–675. doi: 10.1126/science.7732375. [DOI] [PubMed] [Google Scholar]
  14. Eyal Y., Meller Y., Lev-Yadun S., Fluhr R. A basic-type PR-1 promoter directs ethylene responsiveness, vascular and abscission zone-specific expression. Plant J. 1993 Aug;4(2):225–234. doi: 10.1046/j.1365-313x.1993.04020225.x. [DOI] [PubMed] [Google Scholar]
  15. Giraudat J., Parcy F., Bertauche N., Gosti F., Leung J., Morris P. C., Bouvier-Durand M., Vartanian N. Current advances in abscisic acid action and signalling. Plant Mol Biol. 1994 Dec;26(5):1557–1577. doi: 10.1007/BF00016490. [DOI] [PubMed] [Google Scholar]
  16. Hanes J., von der Kammer H., Klaudiny J., Scheit K. H. Characterization by cDNA cloning of two new human protein kinases. Evidence by sequence comparison of a new family of mammalian protein kinases. J Mol Biol. 1994 Dec 16;244(5):665–672. doi: 10.1006/jmbi.1994.1763. [DOI] [PubMed] [Google Scholar]
  17. Haystead T. A., Dent P., Wu J., Haystead C. M., Sturgill T. W. Ordered phosphorylation of p42mapk by MAP kinase kinase. FEBS Lett. 1992 Jul 13;306(1):17–22. doi: 10.1016/0014-5793(92)80828-5. [DOI] [PubMed] [Google Scholar]
  18. Hua J., Chang C., Sun Q., Meyerowitz E. M. Ethylene insensitivity conferred by Arabidopsis ERS gene. Science. 1995 Sep 22;269(5231):1712–1714. doi: 10.1126/science.7569898. [DOI] [PubMed] [Google Scholar]
  19. Hunter T. Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell. 1995 Jan 27;80(2):225–236. doi: 10.1016/0092-8674(95)90405-0. [DOI] [PubMed] [Google Scholar]
  20. Johnson K. W., Smith K. A. Molecular cloning of a novel human cdc2/CDC28-like protein kinase. J Biol Chem. 1991 Feb 25;266(6):3402–3407. [PubMed] [Google Scholar]
  21. Kamps M. P., Sefton B. M. Acid and base hydrolysis of phosphoproteins bound to immobilon facilitates analysis of phosphoamino acids in gel-fractionated proteins. Anal Biochem. 1989 Jan;176(1):22–27. doi: 10.1016/0003-2697(89)90266-2. [DOI] [PubMed] [Google Scholar]
  22. Kieber J. J., Rothenberg M., Roman G., Feldmann K. A., Ecker J. R. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell. 1993 Feb 12;72(3):427–441. doi: 10.1016/0092-8674(93)90119-b. [DOI] [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Lehman A., Black R., Ecker J. R. HOOKLESS1, an ethylene response gene, is required for differential cell elongation in the Arabidopsis hypocotyl. Cell. 1996 Apr 19;85(2):183–194. doi: 10.1016/s0092-8674(00)81095-8. [DOI] [PubMed] [Google Scholar]
  25. Lindberg R. A., Quinn A. M., Hunter T. Dual-specificity protein kinases: will any hydroxyl do? Trends Biochem Sci. 1992 Mar;17(3):114–119. doi: 10.1016/0968-0004(92)90248-8. [DOI] [PubMed] [Google Scholar]
  26. Martin G. B., Brommonschenkel S. H., Chunwongse J., Frary A., Ganal M. W., Spivey R., Wu T., Earle E. D., Tanksley S. D. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science. 1993 Nov 26;262(5138):1432–1436. doi: 10.1126/science.7902614. [DOI] [PubMed] [Google Scholar]
  27. Mizoguchi T., Gotoh Y., Nishida E., Yamaguchi-Shinozaki K., Hayashida N., Iwasaki T., Kamada H., Shinozaki K. Characterization of two cDNAs that encode MAP kinase homologues in Arabidopsis thaliana and analysis of the possible role of auxin in activating such kinase activities in cultured cells. Plant J. 1994 Jan;5(1):111–122. doi: 10.1046/j.1365-313x.1994.5010111.x. [DOI] [PubMed] [Google Scholar]
  28. Mu J. H., Lee H. S., Kao T. H. Characterization of a pollen-expressed receptor-like kinase gene of Petunia inflata and the activity of its encoded kinase. Plant Cell. 1994 May;6(5):709–721. doi: 10.1105/tpc.6.5.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Myers M. P., Murphy M. B., Landreth G. The dual-specificity CLK kinase induces neuronal differentiation of PC12 cells. Mol Cell Biol. 1994 Oct;14(10):6954–6961. doi: 10.1128/mcb.14.10.6954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Padmanabha R., Gehrung S., Snyder M. The KNS1 gene of Saccharomyces cerevisiae encodes a nonessential protein kinase homologue that is distantly related to members of the CDC28/cdc2 gene family. Mol Gen Genet. 1991 Sep;229(1):1–9. doi: 10.1007/BF00264206. [DOI] [PubMed] [Google Scholar]
  31. Raikhel N. Nuclear targeting in plants. Plant Physiol. 1992 Dec;100(4):1627–1632. doi: 10.1104/pp.100.4.1627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Raz V., Fluhr R. Calcium Requirement for Ethylene-Dependent Responses. Plant Cell. 1992 Sep;4(9):1123–1130. doi: 10.1105/tpc.4.9.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Raz V., Fluhr R. Ethylene Signal Is Transduced via Protein Phosphorylation Events in Plants. Plant Cell. 1993 May;5(5):523–530. doi: 10.1105/tpc.5.5.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roe J. L., Rivin C. J., Sessions R. A., Feldmann K. A., Zambryski P. C. The Tousled gene in A. thaliana encodes a protein kinase homolog that is required for leaf and flower development. Cell. 1993 Dec 3;75(5):939–950. doi: 10.1016/0092-8674(93)90537-z. [DOI] [PubMed] [Google Scholar]
  35. Roman G., Lubarsky B., Kieber J. J., Rothenberg M., Ecker J. R. Genetic analysis of ethylene signal transduction in Arabidopsis thaliana: five novel mutant loci integrated into a stress response pathway. Genetics. 1995 Mar;139(3):1393–1409. doi: 10.1093/genetics/139.3.1393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Seo S., Okamoto M., Seto H., Ishizuka K., Sano H., Ohashi Y. Tobacco MAP kinase: a possible mediator in wound signal transduction pathways. Science. 1995 Dec 22;270(5244):1988–1992. doi: 10.1126/science.270.5244.1988. [DOI] [PubMed] [Google Scholar]
  37. Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
  38. Song W. Y., Wang G. L., Chen L. L., Kim H. S., Pi L. Y., Holsten T., Gardner J., Wang B., Zhai W. X., Zhu L. H. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science. 1995 Dec 15;270(5243):1804–1806. doi: 10.1126/science.270.5243.1804. [DOI] [PubMed] [Google Scholar]
  39. Stone J. M., Collinge M. A., Smith R. D., Horn M. A., Walker J. C. Interaction of a protein phosphatase with an Arabidopsis serine-threonine receptor kinase. Science. 1994 Nov 4;266(5186):793–795. doi: 10.1126/science.7973632. [DOI] [PubMed] [Google Scholar]
  40. Suzuki K., Shinshi H. Transient Activation and Tyrosine Phosphorylation of a Protein Kinase in Tobacco Cells Treated with a Fungal Elicitor. Plant Cell. 1995 May;7(5):639–647. doi: 10.1105/tpc.7.5.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tobe K., Kadowaki T., Tamemoto H., Ueki K., Hara K., Koshio O., Momomura K., Gotoh Y., Nishida E., Akanuma Y. Insulin and 12-O-tetradecanoylphorbol-13-acetate activation of two immunologically distinct myelin basic protein/microtubule-associated protein 2 (MBP/MAP2) kinases via de novo phosphorylation of threonine and tyrosine residues. J Biol Chem. 1991 Dec 25;266(36):24793–24803. [PubMed] [Google Scholar]
  42. Ullrich A., Schlessinger J. Signal transduction by receptors with tyrosine kinase activity. Cell. 1990 Apr 20;61(2):203–212. doi: 10.1016/0092-8674(90)90801-k. [DOI] [PubMed] [Google Scholar]
  43. Usami S., Banno H., Ito Y., Nishihama R., Machida Y. Cutting activates a 46-kilodalton protein kinase in plants. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8660–8664. doi: 10.1073/pnas.92.19.8660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wilkinson J. Q., Lanahan M. B., Yen H. C., Giovannoni J. J., Klee H. J. An ethylene-inducible component of signal transduction encoded by never-ripe. Science. 1995 Dec 15;270(5243):1807–1809. doi: 10.1126/science.270.5243.1807. [DOI] [PubMed] [Google Scholar]
  45. Yun B., Farkas R., Lee K., Rabinow L. The Doa locus encodes a member of a new protein kinase family and is essential for eye and embryonic development in Drosophila melanogaster. Genes Dev. 1994 May 15;8(10):1160–1173. doi: 10.1101/gad.8.10.1160. [DOI] [PubMed] [Google Scholar]
  46. Zhang F., Strand A., Robbins D., Cobb M. H., Goldsmith E. J. Atomic structure of the MAP kinase ERK2 at 2.3 A resolution. Nature. 1994 Feb 24;367(6465):704–711. doi: 10.1038/367704a0. [DOI] [PubMed] [Google Scholar]
  47. Zhou J., Loh Y. T., Bressan R. A., Martin G. B. The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell. 1995 Dec 15;83(6):925–935. doi: 10.1016/0092-8674(95)90208-2. [DOI] [PubMed] [Google Scholar]

Articles from The Plant Cell are provided here courtesy of Oxford University Press

RESOURCES