Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Nov;109(3):751–759. doi: 10.1104/pp.109.3.751

Class I [beta]-1,3-Glucanases in the Endosperm of Tobacco during Germination.

G Leubner-Metzger 1, C Frundt 1, R Vogeli-Lange 1, F Meins Jr 1
PMCID: PMC161374  PMID: 12228629

Abstract

Rupture of the seed coat and rupture of the endosperm are separate events in the germination of Nicotiana tabacum L. cv Havana 425 seeds. Treatment with 10-5 M abscisic acid (ABA) did not appreciably affect seed-coat rupture but greatly delayed subsequent endosperm rupture by more than 100 h and resulted in the formation of a novel structure consisting of the enlarging radicle with a sheath of greatly elongated endosperm tissue. Therefore, ABA appears to act primarily by delaying endosperm rupture and radicle emergence. Measurements of [beta]-1,3-glucanase activity, antigen content, and mRNA accumulation together with reporter gene experiments showed that induction of class I [beta]-1,3-glucanase genes begins just prior to the onset of endosperm rupture but after the completion of seed-coat rupture. This induction was localized exclusively in the micropylar region of the endosperm, where the radicle will penetrate. ABA treatment markedly inhibited the rate of [beta]-1,3-glucanase accumulation but did not delay the onset of induction. Independent of the ABA concentration used, onset of endosperm rupture was correlated with the same [beta]-1,3-glucanase content/seed. These results suggest that ABA-sensitive class I [beta]-1,3-glucanases promote radicle penetration of the endosperm, which is a key limiting step in tobacco seed germination.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beffa R. S., Neuhaus J. M., Meins F., Jr Physiological compensation in antisense transformants: specific induction of an "ersatz" glucan endo-1,3-beta-glucosidase in plants infected with necrotizing viruses. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):8792–8796. doi: 10.1073/pnas.90.19.8792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowles D. J. Defense-related proteins in higher plants. Annu Rev Biochem. 1990;59:873–907. doi: 10.1146/annurev.bi.59.070190.004301. [DOI] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Chomczynski P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques. 1993 Sep;15(3):532-4, 536-7. [PubMed] [Google Scholar]
  5. Dutta S., Bradford K. J., Nevins D. J. Cell-Wall Autohydrolysis in Isolated Endosperms of Lettuce (Lactuca sativa L.). Plant Physiol. 1994 Feb;104(2):623–628. doi: 10.1104/pp.104.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Groot S. P., Karssen C. M. Dormancy and Germination of Abscisic Acid-Deficient Tomato Seeds : Studies with the sitiens Mutant. Plant Physiol. 1992 Jul;99(3):952–958. doi: 10.1104/pp.99.3.952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gubler F., Jacobsen J. V. Gibberellin-responsive elements in the promoter of a barley high-pI alpha-amylase gene. Plant Cell. 1992 Nov;4(11):1435–1441. doi: 10.1105/tpc.4.11.1435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hird D. L., Worrall D., Hodge R., Smartt S., Paul W., Scott R. The anther-specific protein encoded by the Brassica napus and Arabidopsis thaliana A6 gene displays similarity to beta-1,3-glucanases. Plant J. 1993 Dec;4(6):1023–1033. doi: 10.1046/j.1365-313x.1993.04061023.x. [DOI] [PubMed] [Google Scholar]
  9. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kauffmann S., Legrand M., Geoffroy P., Fritig B. Biological function of ;pathogenesis-related' proteins: four PR proteins of tobacco have 1,3-beta-glucanase activity. EMBO J. 1987 Nov;6(11):3209–3212. doi: 10.1002/j.1460-2075.1987.tb02637.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ni B. R., Bradford K. J. Germination and Dormancy of Abscisic Acid- and Gibberellin-Deficient Mutant Tomato (Lycopersicon esculentum) Seeds (Sensitivity of Germination to Abscisic Acid, Gibberellin, and Water Potential). Plant Physiol. 1993 Feb;101(2):607–617. doi: 10.1104/pp.101.2.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ni B. R., Bradford K. J. Quantitative models characterizing seed germination responses to abscisic Acid and osmoticum. Plant Physiol. 1992 Mar;98(3):1057–1068. doi: 10.1104/pp.98.3.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ori N., Sessa G., Lotan T., Himmelhoch S., Fluhr R. A major stylar matrix polypeptide (sp41) is a member of the pathogenesis-related proteins superclass. EMBO J. 1990 Nov;9(11):3429–3436. doi: 10.1002/j.1460-2075.1990.tb07550.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Payne G., Ward E., Gaffney T., Goy P. A., Moyer M., Harper A., Meins F., Jr, Ryals J. Evidence for a third structural class of beta-1,3-glucanase in tobacco. Plant Mol Biol. 1990 Dec;15(6):797–808. doi: 10.1007/BF00039420. [DOI] [PubMed] [Google Scholar]
  15. Rodrigues-Pousada R. A., De Rycke R., Dedonder A., Van Caeneghem W., Engler G., Van Montagu M., Van Der Straeten D. The Arabidopsis 1-Aminocyclopropane-1-Carboxylate Synthase Gene 1 Is Expressed during Early Development. Plant Cell. 1993 Aug;5(8):897–911. doi: 10.1105/tpc.5.8.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schmidt-Puchta W., Kütemeier G., Günther I., Haas B., Sänger H. L. Cloning and sequence analysis of the 18 S ribosomal RNA gene of tomato and a secondary structure model for the 18 S rRNA of angiosperms. Mol Gen Genet. 1989 Oct;219(1-2):17–25. doi: 10.1007/BF00261152. [DOI] [PubMed] [Google Scholar]
  17. Schopfer P., Plachy C. Control of Seed Germination by Abscisic Acid : III. Effect on Embryo Growth Potential (Minimum Turgor Pressure) and Growth Coefficient (Cell Wall Extensibility) in Brassica napus L. Plant Physiol. 1985 Mar;77(3):676–686. doi: 10.1104/pp.77.3.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shinshi H., Mohnen D., Meins F. Regulation of a plant pathogenesis-related enzyme: Inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues by auxin and cytokinin. Proc Natl Acad Sci U S A. 1987 Jan;84(1):89–93. doi: 10.1073/pnas.84.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shinshi H., Wenzler H., Neuhaus J. M., Felix G., Hofsteenge J., Meins F. Evidence for N- and C-terminal processing of a plant defense-related enzyme: Primary structure of tobacco prepro-beta-1,3-glucanase. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5541–5545. doi: 10.1073/pnas.85.15.5541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ward E. R., Uknes S. J., Williams S. C., Dincher S. S., Wiederhold D. L., Alexander D. C., Ahl-Goy P., Metraux J. P., Ryals J. A. Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance. Plant Cell. 1991 Oct;3(10):1085–1094. doi: 10.1105/tpc.3.10.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES