Abstract
A genomic fragment encoding one (HMGR1) of the three 3-hydroxy-3-methylglutaryl coenzyme A reductases (HMGRs) from Hevea brasiliensis (H.B.K.) Mull. Arg. (M.-L. Chye, C.-T. Tan, N.-H. Chua [1992] Plant Mol Biol 19: 473-484) was introduced into Nicotiana tabacum L. cv xanthi via Agrobacterium transformation to study the influence of the hmg1 gene product on plant isoprenoid biosynthesis. Transgenic plants were morphologically indistinguishable from control wild-type plants and displayed the same developmental pattern. Transgenic lines showed an increase in the level of total sterols up to 6-fold, probably because of an increased expression level of hmg1 mRNA and a corresponding increased enzymatic activity for HMGR, when compared with the level of total sterols from control lines not expressing the hmg1 transgene. In addition to the pathway end products, campesterol, sitosterol, and stigmasterol, some biosynthetic intermediates such as cycloartenol also accumulated in transgenic tissues. Most of the overproduced sterols were detected as steryl-esters and were likely to be stored in cytoplasmic lipid bodies. These data strongly support the conclusion that plant HMGR is a key limiting enzyme in phytosterol biosynthesis.
Full Text
The Full Text of this article is available as a PDF (2.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bach T. J., Rogers D. H., Rudney H. Detergent-solubilization, purification, and characterization of membrane-bound 3-hydroxy-3-methylglutaryl-coenzyme A reductase from radish seedlings. Eur J Biochem. 1986 Jan 2;154(1):103–111. doi: 10.1111/j.1432-1033.1986.tb09364.x. [DOI] [PubMed] [Google Scholar]
- Becker W., Bruce A. Retention of linoleic acid in carcass lipids of rats fed different levels of essential fatty acids. Lipids. 1986 Feb;21(2):121–126. doi: 10.1007/BF02534432. [DOI] [PubMed] [Google Scholar]
- Bloch K. E. Sterol structure and membrane function. CRC Crit Rev Biochem. 1983;14(1):47–92. doi: 10.3109/10409238309102790. [DOI] [PubMed] [Google Scholar]
- Chappell J. The Biochemistry and Molecular Biology of Isoprenoid Metabolism. Plant Physiol. 1995 Jan;107(1):1–6. doi: 10.1104/pp.107.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chye M. L., Kush A., Tan C. T., Chua N. H. Characterization of cDNA and genomic clones encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase from Hevea brasiliensis. Plant Mol Biol. 1991 Apr;16(4):567–577. doi: 10.1007/BF00023422. [DOI] [PubMed] [Google Scholar]
- Chye M. L., Tan C. T., Chua N. H. Three genes encode 3-hydroxy-3-methylglutaryl-coenzyme A reductase in Hevea brasiliensis: hmg1 and hmg3 are differentially expressed. Plant Mol Biol. 1992 Jun;19(3):473–484. doi: 10.1007/BF00023395. [DOI] [PubMed] [Google Scholar]
- Chye M. L., Tan S. A., Tan C. T., Kush A., Chua N. H. Nucleotide sequence of a cDNA clone encoding the precursor of ribulose-1,5-bisphosphate carboxylase small subunit from Hevea brasiliensis (rubber tree). Plant Mol Biol. 1991 Jun;16(6):1077–1078. doi: 10.1007/BF00016079. [DOI] [PubMed] [Google Scholar]
- Goh W. C., Sodroski J., Rosen C., Essex M., Haseltine W. A. Subcellular localization of the product of the long open reading frame of human T-cell leukemia virus type I. Science. 1985 Mar 8;227(4691):1227–1228. doi: 10.1126/science.2983419. [DOI] [PubMed] [Google Scholar]
- Goldstein J. L., Brown M. S. Regulation of the mevalonate pathway. Nature. 1990 Feb 1;343(6257):425–430. doi: 10.1038/343425a0. [DOI] [PubMed] [Google Scholar]
- Gondet L., Bronner R., Benveniste P. Regulation of Sterol Content in Membranes by Subcellular Compartmentation of Steryl-Esters Accumulating in a Sterol-Overproducing Tobacco Mutant. Plant Physiol. 1994 Jun;105(2):509–518. doi: 10.1104/pp.105.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gondet L., Weber T., Maillot-Vernier P., Benveniste P., Bach T. J. Regulatory role of microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase in a tobacco mutant that overproduces sterols. Biochem Biophys Res Commun. 1992 Jul 31;186(2):888–893. doi: 10.1016/0006-291x(92)90829-a. [DOI] [PubMed] [Google Scholar]
- Hepper C. M., Audley B. G. Th biosynthesis of rubber from beta-hydroxy-beta-methylgluarylcoenzyme A in Hevea brasiliensis latex. Biochem J. 1969 Sep;114(2):379–386. doi: 10.1042/bj1140379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maillot-Vernier P., Schaller H., Benveniste P., Belliard G. Biochemical characterization of a sterol mutant plant regenerated from a tobacco callus resistant to a triazole cytochrome-P-450-obtusifoliol-14-demethylase inhibitor. Biochem Biophys Res Commun. 1989 Nov 30;165(1):125–130. doi: 10.1016/0006-291x(89)91043-7. [DOI] [PubMed] [Google Scholar]
- Maillot-Vernier P., Schaller H., Benveniste P., Belliard G. In Vitro Selection of Calli Resistant to a Triazole Cytochrome-P-450-Obtusifoliol-14-Demethylase Inhibitor from Protoplasts of Nicotiana tabacum L. cv Xanthi. Plant Physiol. 1990 Jul;93(3):1190–1195. doi: 10.1104/pp.93.3.1190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Narita J. O., Gruissem W. Tomato hydroxymethylglutaryl-CoA reductase is required early in fruit development but not during ripening. Plant Cell. 1989 Feb;1(2):181–190. doi: 10.1105/tpc.1.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pascal S., Taton M., Rahier A. Plant sterol biosynthesis. Identification and characterization of two distinct microsomal oxidative enzymatic systems involved in sterol C4-demethylation. J Biol Chem. 1993 Jun 5;268(16):11639–11654. [PubMed] [Google Scholar]
- Re E. B., Jones D., Learned R. M. Co-expression of native and introduced genes reveals cryptic regulation of HMG CoA reductase expression in Arabidopsis. Plant J. 1995 May;7(5):771–784. doi: 10.1046/j.1365-313x.1995.07050771.x. [DOI] [PubMed] [Google Scholar]
- Stermer B. A., Bianchini G. M., Korth K. L. Regulation of HMG-CoA reductase activity in plants. J Lipid Res. 1994 Jul;35(7):1133–1140. [PubMed] [Google Scholar]