Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Nov;109(3):797–802. doi: 10.1104/pp.109.3.797

Formation of the ferritin iron mineral occurs in plastids.

G S Waldo 1, E Wright 1, Z H Whang 1, J F Briat 1, E C Theil 1, D E Sayers 1
PMCID: PMC161379  PMID: 8552714

Abstract

Ferritin in plants is a nuclear-encoded, multisubunit protein found in plastids; an N-terminal transit peptide targets the protein to the plastid, but the site for formation of the ferritin Fe mineral is unknown. In biology, ferritin is required to concentrate Fe to levels needed by cells (approximately 10(-7) M), far above the solubility of the free ion (10(-18) M); the protein directs the reversible phase transition of the hydrated metal ion in solution to hydrated Fe-oxo mineral. Low phosphate characterizes the solid-phase Fe mineral in the center of ferritin of the cytosolic animal ferritin, but high phosphate is the hallmark of Fe mineral in prokaryotic ferritin and plant (pea [Pisum sativum L.] seed) ferritin. Earlier studies using x-ray absorption spectroscopy showed that high concentrations of phosphate present during ferritin mineralization in vivo altered the local structure of Fe in the ferritin mineral so that it mimicked the prokaryotic type, whether the protein was from animals or bacteria. The use of x-ray absorption spectroscopy to analyze the Fe environment in pea-seed ferritin now shows that the natural ferritin mineral in plants has an Fe-P interaction at 3.26A, similar to that of bacterial ferritin; phosphate also prevented formation of the longer Fe-Fe interactions at 3.5A found in animal ferritins or in pea-seed ferritin reconstituted without phosphate. Such results indicate that ferritin mineralization occurs in the plastid, where the phosphate content is higher; a corollary is the existence of a plastid Fe uptake system to allow the concentration of Fe in the ferritin mineral.

Full Text

The Full Text of this article is available as a PDF (579.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauminger E. R., Cohen S. G., Dickson D. P., Levy A., Ofer S., Yariv J. Mössbauer spectroscopy of Escherichia coli and its iron-storage protein. Biochim Biophys Acta. 1980 Jun 26;623(2):237–242. doi: 10.1016/0005-2795(80)90252-4. [DOI] [PubMed] [Google Scholar]
  2. Bligny R., Gardestrom P., Roby C., Douce R. 31P NMR studies of spinach leaves and their chloroplasts. J Biol Chem. 1990 Jan 25;265(3):1319–1326. [PubMed] [Google Scholar]
  3. Islam Q. T., Sayers D. E., Gorun S. M., Theil E. C. A comparison of an undecairon(III) complex with the ferritin iron core. J Inorg Biochem. 1989 May;36(1):51–62. doi: 10.1016/0162-0134(89)80012-1. [DOI] [PubMed] [Google Scholar]
  4. Li H. M., Theg S. M., Bauerle C. M., Keegstra K. Metal-ion-center assembly of ferredoxin and plastocyanin in isolated chloroplasts. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6748–6752. doi: 10.1073/pnas.87.17.6748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Mann S., Bannister J. V., Williams R. J. Structure and composition of ferritin cores isolated from human spleen, limpet (Patella vulgata) hemolymph and bacterial (Pseudomonas aeruginosa) cells. J Mol Biol. 1986 Mar 20;188(2):225–232. doi: 10.1016/0022-2836(86)90307-4. [DOI] [PubMed] [Google Scholar]
  6. Mansour A. N., Thompson C., Theil E. C., Chasteen N. D., Sayers D. E. Fe(III).ATP complexes. Models for ferritin and other polynuclear iron complexes with phosphate. J Biol Chem. 1985 Jul 5;260(13):7975–7979. [PubMed] [Google Scholar]
  7. Merchant S., Bogorad L. Rapid degradation of apoplastocyanin in Cu(II)-deficient cells of Chlamydomonas reinhardtii. J Biol Chem. 1986 Dec 5;261(34):15850–15853. [PubMed] [Google Scholar]
  8. Ragland M., Briat J. F., Gagnon J., Laulhere J. P., Massenet O., Theil E. C. Evidence for conservation of ferritin sequences among plants and animals and for a transit peptide in soybean. J Biol Chem. 1990 Oct 25;265(30):18339–18344. [PubMed] [Google Scholar]
  9. Roby C., Martin J. B., Bligny R., Douce R. Biochemical changes during sucrose deprivation in higher plant cells. Phosphorus-31 nuclear magnetic resonance studies. J Biol Chem. 1987 Apr 15;262(11):5000–5007. [PubMed] [Google Scholar]
  10. Theil E. C. Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem. 1987;56:289–315. doi: 10.1146/annurev.bi.56.070187.001445. [DOI] [PubMed] [Google Scholar]
  11. Theil E. C., Sayers D. E., Brown M. A. Similarity of the structure of ferritin and iron . dextran (imferon) determined by extended X-ray absorption fine structure analysis. J Biol Chem. 1979 Sep 10;254(17):8132–8134. [PubMed] [Google Scholar]
  12. Wade V. J., Treffry A., Laulhère J. P., Bauminger E. R., Cleton M. I., Mann S., Briat J. F., Harrison P. M. Structure and composition of ferritin cores from pea seed (Pisum sativum). Biochim Biophys Acta. 1993 Jan 15;1161(1):91–96. doi: 10.1016/0167-4838(93)90201-2. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES