Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Nov;109(3):813–820. doi: 10.1104/pp.109.3.813

An Arabidopsis thaliana thionin gene is inducible via a signal transduction pathway different from that for pathogenesis-related proteins.

P Epple 1, K Apel 1, H Bohlmann 1
PMCID: PMC161381  PMID: 8552715

Abstract

Two cDNAs encoding thionin preproteins have been isolated from Arabidopsis thaliana. The corresponding genes have been designated Thi2.1 and Thi2.2. Southern blot analysis suggests that A. thaliana most probably contains single genes for both thionins. Thi2.2 transcripts have a low basal level in seedlings and show circadian variation. Thi2.2 transcripts were also detected in rosette leaves. No potent elicitors have been found for the Thi2.2 gene. Transcripts of the Thi2.1 gene are not detectable in seedlings but are present in rosette leaves and at a very high level in flowers and in siliques. The expression of the Thi2.1 gene is highly inducible in seedlings by pathogens, silver nitrate, and methyl jasmonate, but not by salicylate, indicating that the gene is induced by a signal transduction pathway that is at least partly different from that for the pathogenesis-related proteins.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andresen I., Becker W., Schlüter K., Burges J., Parthier B., Apel K. The identification of leaf thionin as one of the main jasmonate-induced proteins of barley (Hordeum vulgare). Plant Mol Biol. 1992 May;19(2):193–204. doi: 10.1007/BF00027341. [DOI] [PubMed] [Google Scholar]
  2. Bunge S., Wolters J., Apel K. A comparison of leaf thionin sequences of barley cultivars and wild barley species. Mol Gen Genet. 1992 Feb;231(3):460–468. doi: 10.1007/BF00292716. [DOI] [PubMed] [Google Scholar]
  3. Carmona M. J., Molina A., Fernández J. A., López-Fando J. J., García-Olmedo F. Expression of the alpha-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens. Plant J. 1993 Mar;3(3):457–462. doi: 10.1111/j.1365-313x.1993.tb00165.x. [DOI] [PubMed] [Google Scholar]
  4. Castagnaro A., Maraña C., Carbonero P., García-Olmedo F. Extreme divergence of a novel wheat thionin generated by a mutational burst specifically affecting the mature protein domain of the precursor. J Mol Biol. 1992 Apr 20;224(4):1003–1009. doi: 10.1016/0022-2836(92)90465-v. [DOI] [PubMed] [Google Scholar]
  5. Dempsey D. A., Klessig D. F. Salicylic acid, active oxygen species and systemic acquired resistance in plants. Trends Cell Biol. 1994 Sep;4(9):334–338. doi: 10.1016/0962-8924(94)90235-6. [DOI] [PubMed] [Google Scholar]
  6. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  7. Fernandez de Caleya R., Gonzalez-Pascual B., García-Olmedo F., Carbonero P. Susceptibility of phytopathogenic bacteria to wheat purothionins in vitro. Appl Microbiol. 1972 May;23(5):998–1000. doi: 10.1128/am.23.5.998-1000.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gundlach H., Müller M. J., Kutchan T. M., Zenk M. H. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2389–2393. doi: 10.1073/pnas.89.6.2389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lawton K. A., Potter S. L., Uknes S., Ryals J. Acquired Resistance Signal Transduction in Arabidopsis Is Ethylene Independent. Plant Cell. 1994 May;6(5):581–588. doi: 10.1105/tpc.6.5.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Melzer S., Majewski D. M., Apel K. Early Changes in Gene Expression during the Transition from Vegetative to Generative Growth in the Long-Day Plant Sinapis alba. Plant Cell. 1990 Oct;2(10):953–961. doi: 10.1105/tpc.2.10.953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Murray M. G., Thompson W. F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980 Oct 10;8(19):4321–4325. doi: 10.1093/nar/8.19.4321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Raz V., Fluhr R. Ethylene Signal Is Transduced via Protein Phosphorylation Events in Plants. Plant Cell. 1993 May;5(5):523–530. doi: 10.1105/tpc.5.5.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reimann-Philipp U., Behnke S., Batschauer A., Schäfer E., Apel K. The effect of light on the biosynthesis of leaf-specific thionins in barley, Hordeum vulgare. Eur J Biochem. 1989 Jun 15;182(2):283–289. doi: 10.1111/j.1432-1033.1989.tb14828.x. [DOI] [PubMed] [Google Scholar]
  14. Reimann-Philipp U., Schrader G., Martinoia E., Barkholt V., Apel K. Intracellular thionins of barley. A second group of leaf thionins closely related to but distinct from cell wall-bound thionins. J Biol Chem. 1989 May 25;264(15):8978–8984. [PubMed] [Google Scholar]
  15. Rodríguez-Palenzuela P., Pintor-Toro J. A., Carbonero P., García-Olmedo F. Nucleotide sequence and endosperm-specific expression of the structural gene for the toxin alpha-hordothionin in barley (Hordeum vulgare L.). Gene. 1988 Oct 30;70(2):271–281. doi: 10.1016/0378-1119(88)90199-0. [DOI] [PubMed] [Google Scholar]
  16. Ryals J., Uknes S., Ward E. Systemic Acquired Resistance. Plant Physiol. 1994 Apr;104(4):1109–1112. doi: 10.1104/pp.104.4.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schrader-Fischer G., Apel K. Organ-specific expression of highly divergent thionin variants that are distinct from the seed-specific crambin in the crucifer Crambe abyssinica. Mol Gen Genet. 1994 Nov 1;245(3):380–389. doi: 10.1007/BF00290119. [DOI] [PubMed] [Google Scholar]
  18. Schrader G., Apel K. Isolation and characterization of cDNAs encoding viscotoxins of mistletoe (Viscum album). Eur J Biochem. 1991 Jun 15;198(3):549–553. doi: 10.1111/j.1432-1033.1991.tb16049.x. [DOI] [PubMed] [Google Scholar]
  19. Terras FRG., Schoofs HME., Thevissen K., Osborn R. W., Vanderleyden J., Cammue BPA., Broekaert W. F. Synergistic Enhancement of the Antifungal Activity of Wheat and Barley Thionins by Radish and Oilseed Rape 2S Albumins and by Barley Trypsin Inhibitors. Plant Physiol. 1993 Dec;103(4):1311–1319. doi: 10.1104/pp.103.4.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tsuji J., Jackson E. P., Gage D. A., Hammerschmidt R., Somerville S. C. Phytoalexin Accumulation in Arabidopsis thaliana during the Hypersensitive Reaction to Pseudomonas syringae pv syringae. Plant Physiol. 1992 Apr;98(4):1304–1309. doi: 10.1104/pp.98.4.1304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Uknes S., Mauch-Mani B., Moyer M., Potter S., Williams S., Dincher S., Chandler D., Slusarenko A., Ward E., Ryals J. Acquired resistance in Arabidopsis. Plant Cell. 1992 Jun;4(6):645–656. doi: 10.1105/tpc.4.6.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yang H., McLeese J., Weisbart M., Dionne J. L., Lemaire I., Aubin R. A. Simplified high throughput protocol for northern hybridization. Nucleic Acids Res. 1993 Jul 11;21(14):3337–3338. doi: 10.1093/nar/21.14.3337. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES