Abstract
The release of elicitor-active carbohydrates from fungal cell walls by beta-1,3-endoglucanase contained in host tissues has been implicated as one of the earliest processes in the interaction between soybean (Glycine max) and the fungal pathogen Phytophthora megasperma f. sp. glycinea leading to host defense responses such as phytoalexin production. The present study was conducted to evaluate the primary structure of the glucanase-released elicitor (RE). Gel-filtration chromatography of carbohydrates released from mycelial walls by purified soybean beta-1,3-endoglucanase resolved them into the four fractions (elicitor-active RE-I, -II, and -III and elicitor-inactive RE-IV). Sugar composition analysis indicated that all of the fractions were composed almost entirely of glucose. 1H- and 13C-nuclear magnetic resonance analysis indicated the presence of both beta-1,3- and beta-1,6-linkages for the elicitor-active RE-I, -II, and -III fractions and only beta-1,3 linkage for the elicitor-inactive RE-IV fraction. Methylation analysis and degradation studies employing beta-1,3-endo- and beta-1,3-exoglucanase further suggested that the basic structure of elicitor-active RE consists of beta-1,6-linked glucan backbone chains of various lengths with frequent side branches composed of beta-1,3-linked one or two glucose moieties. From these structural analyses of RE, a structural model of how RE is originally present in fungal cell walls and released by host beta-1,3-endoglucanase is also proposed.
Full Text
The Full Text of this article is available as a PDF (701.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ayers A. R., Valent B., Ebel J., Albersheim P. Host-Pathogen Interactions: XI. Composition and Structure of Wall-released Elicitor Fractions. Plant Physiol. 1976 May;57(5):766–774. doi: 10.1104/pp.57.5.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BARTNICKI-GARCIA S., NICKERSON W. J. Isolation, composition, and structure of cell walls of filamentous and yeast-like forms of Mucor rouxii. Biochim Biophys Acta. 1962 Mar 26;58:102–119. doi: 10.1016/0006-3002(62)90822-3. [DOI] [PubMed] [Google Scholar]
- Cheong J. J., Birberg W., Fügedi P., Pilotti A., Garegg P. J., Hong N., Ogawa T., Hahn M. G. Structure-activity relationships of oligo-beta-glucoside elicitors of phytoalexin accumulation in soybean. Plant Cell. 1991 Feb;3(2):127–136. doi: 10.1105/tpc.3.2.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cline K., Albersheim P. Host-Pathogen Interactions : XVII. HYDROLYSIS OF BIOLOGICALLY ACTIVE FUNGAL GLUCANS BY ENZYMES ISOLATED FROM SOYBEAN CELLS. Plant Physiol. 1981 Jul;68(1):221–228. doi: 10.1104/pp.68.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keen N. T., Yoshikawa M., Wang M. C. Phytoalexin Elicitor Activity of Carbohydrates from Phytophthora megasperma f.sp. glycinea and Other Sources. Plant Physiol. 1983 Mar;71(3):466–471. doi: 10.1104/pp.71.3.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharp J. K., McNeil M., Albersheim P. The primary structures of one elicitor-active and seven elicitor-inactive hexa(beta-D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of Phytophthora megasperma f. sp. glycinea. J Biol Chem. 1984 Sep 25;259(18):11321–11336. [PubMed] [Google Scholar]
- Takeuchi Y., Yoshikawa M., Takeba G., Tanaka K., Shibata D., Horino O. Molecular Cloning and Ethylene Induction of mRNA Encoding a Phytoalexin Elicitor-Releasing Factor, beta-1,3-Endoglucanase, in Soybean. Plant Physiol. 1990 Jun;93(2):673–682. doi: 10.1104/pp.93.2.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshikawa M., Matama M., Masago H. Release of a Soluble Phytoalexin Elicitor from Mycelial Walls of Phytophthora megasperma var. sojae by Soybean Tissues. Plant Physiol. 1981 May;67(5):1032–1035. doi: 10.1104/pp.67.5.1032. [DOI] [PMC free article] [PubMed] [Google Scholar]