Abstract
A cDNA clone encoding a soluble inorganic pyrophosphatase (EC 3.6.1.1) of potato (Solanum tuberosum L.) was isolated by screening a developing tuber library with a heterologous probe. The central domain of the encoded polypeptide is nearly identical at the sequence level with its Arabidopsis homolog (J.J. Kieber and E.R. Signer [1991] Plant Mol Biol 16: 345-348). Computer-assisted analysis of the potato, Arabidopsis, and Escherichia coli soluble pyrophosphatases indicated a remarkably conserved organization of the hydrophobic protein domains. The enzymatic function of the potato protein could be deduced from the presence of amino acid residues highly conserved in soluble pyrophosphatases and was confirmed by its capacity to complement a thermosensitive pyrophosphatase mutation in E. coli. The potato polypeptide was purified from complemented bacterial cells and its pyrophosphatase activity was shown to be strictly dependent on Mg2+ and strongly inhibited by Ca2+. The subcellular location of the potato pyrophosphatase is unknown. Structure analysis of the N-terminal protein domain failed to recognize typical transit peptides and the calculated molecular mass of the polypeptide (24 kD) is significantly inferior to the values reported for the plastidic (alkaline) or mitochondrial pyrophosphatases in plants (28-42 kD). Two unlinked loci could be mapped by restriction fragment length polymorphism analysis in the potato genome using the full-length cDNA as probe.
Full Text
The Full Text of this article is available as a PDF (1.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Braun H. P., Schmitz U. K. Molecular features and mitochondrial import pathway of the 14-kilodalton subunit of cytochrome c reductase from potato. Plant Physiol. 1995 Apr;107(4):1217–1223. doi: 10.1104/pp.107.4.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burchell A., Hume R., Burchell B. A new microtechnique for the analysis of the human hepatic microsomal glucose-6-phosphatase system. Clin Chim Acta. 1988 Apr 15;173(2):183–191. doi: 10.1016/0009-8981(88)90256-2. [DOI] [PubMed] [Google Scholar]
- Chen J., Brevet A., Fromant M., Lévêque F., Schmitter J. M., Blanquet S., Plateau P. Pyrophosphatase is essential for growth of Escherichia coli. J Bacteriol. 1990 Oct;172(10):5686–5689. doi: 10.1128/jb.172.10.5686-5689.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooperman B. S., Baykov A. A., Lahti R. Evolutionary conservation of the active site of soluble inorganic pyrophosphatase. Trends Biochem Sci. 1992 Jul;17(7):262–266. doi: 10.1016/0968-0004(92)90406-y. [DOI] [PubMed] [Google Scholar]
- Dreses-Werringloer U., Fischer K., Wachter E., Link T. A., Flügge U. I. cDNA sequence and deduced amino acid sequence of the precursor of the 37-kDa inner envelope membrane polypeptide from spinach chloroplasts. Its transit peptide contains an amphiphilic alpha-helix as the only detectable structural element. Eur J Biochem. 1991 Jan 30;195(2):361–368. doi: 10.1111/j.1432-1033.1991.tb15714.x. [DOI] [PubMed] [Google Scholar]
- Gould J. M., Winget G. D. A membrane-bound alkaline inorganic pyrophosphatase in isolated spinach chloroplasts. Arch Biochem Biophys. 1973 Feb;154(2):606–613. doi: 10.1016/0003-9861(73)90015-5. [DOI] [PubMed] [Google Scholar]
- Joshi C. P. An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res. 1987 Aug 25;15(16):6643–6653. doi: 10.1093/nar/15.16.6643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kieber J. J., Signer E. R. Cloning and characterization of an inorganic pyrophosphatase gene from Arabidopsis thaliana. Plant Mol Biol. 1991 Feb;16(2):345–348. doi: 10.1007/BF00020567. [DOI] [PubMed] [Google Scholar]
- Krishnan V. A., Gnanam A. Properties and regulation of Mg2+-dependent chloroplast inorganic pyrophosphatase from Sorghum vulgare leaves. Arch Biochem Biophys. 1988 Jan;260(1):277–284. doi: 10.1016/0003-9861(88)90451-1. [DOI] [PubMed] [Google Scholar]
- Lemesle-Varloot L., Henrissat B., Gaboriaud C., Bissery V., Morgat A., Mornon J. P. Hydrophobic cluster analysis: procedures to derive structural and functional information from 2-D-representation of protein sequences. Biochimie. 1990 Aug;72(8):555–574. doi: 10.1016/0300-9084(90)90120-6. [DOI] [PubMed] [Google Scholar]
- Lerchl J., Geigenberger P., Stitt M., Sonnewald U. Impaired photoassimilate partitioning caused by phloem-specific removal of pyrophosphate can be complemented by a phloem-specific cytosolic yeast-derived invertase in transgenic plants. Plant Cell. 1995 Mar;7(3):259–270. doi: 10.1105/tpc.7.3.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lichko L., Okorokov L. Purification and some properties of membrane-bound and soluble pyrophosphatases of yeast vacuoles. Yeast. 1991 Nov;7(8):805–812. doi: 10.1002/yea.320070805. [DOI] [PubMed] [Google Scholar]
- Lundin M., Baltscheffsky H., Ronne H. Yeast PPA2 gene encodes a mitochondrial inorganic pyrophosphatase that is essential for mitochondrial function. J Biol Chem. 1991 Jul 5;266(19):12168–12172. [PubMed] [Google Scholar]
- Rea P. A., Kim Y., Sarafian V., Poole R. J., Davies J. M., Sanders D. Vacuolar H(+)-translocating pyrophosphatases: a new category of ion translocase. Trends Biochem Sci. 1992 Sep;17(9):348–353. doi: 10.1016/0968-0004(92)90313-x. [DOI] [PubMed] [Google Scholar]
- Smyth D. A., Black C. C. Measurement of the pyrophosphate content of plant tissues. Plant Physiol. 1984 Jul;75(3):862–864. doi: 10.1104/pp.75.3.862. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sonnewald U., Brauer M., von Schaewen A., Stitt M., Willmitzer L. Transgenic tobacco plants expressing yeast-derived invertase in either the cytosol, vacuole or apoplast: a powerful tool for studying sucrose metabolism and sink/source interactions. Plant J. 1991 Jul;1(1):95–106. doi: 10.1111/j.1365-313x.1991.00095.x. [DOI] [PubMed] [Google Scholar]
- Takeshige K., Tazawa M. Determination of the inorganic pyrophosphate level and its subcellular localization in Chara corallina. J Biol Chem. 1989 Feb 25;264(6):3262–3266. [PubMed] [Google Scholar]
- Volk S. E., Baykov A. A. Isolation and subunit composition of membrane inorganic pyrophosphatase from rat-liver mitochondria. Biochim Biophys Acta. 1984 Dec 7;791(2):198–204. doi: 10.1016/0167-4838(84)90009-8. [DOI] [PubMed] [Google Scholar]
- Volk S. E., Baykov A. A., Kostenko E. B., Avaeva S. M. Isolation, subunit structure and localization of inorganic pyrophosphatase of heart and liver mitochondria. Biochim Biophys Acta. 1983 Apr 28;744(2):127–134. doi: 10.1016/0167-4838(83)90081-x. [DOI] [PubMed] [Google Scholar]
- Zancani M., Macrì F., Dal Belin Peruffo A., Vianello A. Isolation of the catalytic subunit of a membrane-bound H(+)-pyrophosphatase from pea stem mitochondria. Eur J Biochem. 1995 Feb 15;228(1):138–143. doi: 10.1111/j.1432-1033.1995.tb20241.x. [DOI] [PubMed] [Google Scholar]
- du Jardin P., Berhin A. Isolation and sequence analysis of a cDNA clone encoding a subunit of the ADP-glucose pyrophosphorylase of potato tuber amyloplasts. Plant Mol Biol. 1991 Feb;16(2):349–351. doi: 10.1007/BF00020568. [DOI] [PubMed] [Google Scholar]
- von Heijne G., Steppuhn J., Herrmann R. G. Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem. 1989 Apr 1;180(3):535–545. doi: 10.1111/j.1432-1033.1989.tb14679.x. [DOI] [PubMed] [Google Scholar]
