Abstract
The ability to control extracellular ice formation during freezing is critical to the survival of freezing-tolerant plants. Antifreeze proteins, which are proteins that have the ability to retard ice crystal growth, were recently identified as the most abundant apoplastic proteins in cold-acclimated winter rye (Secale cereale L.) leaves. In the experiments reported here, amino-terminal sequence comparisons, immuno-cross-reactions, and enzyme activity assays all indicated that these antifreeze proteins are similar to members of three classes of pathogenesis-related proteins, namely, endochitinases, endo-beta-1,3-glucanases, and thaumatin-like proteins. Apoplastic endochitinases and endo-beta-1,3-glucanases that were induced by pathogens in freezing-sensitive tobacco did not exhibit antifreeze activity. Our findings suggest that subtle structural differences may have evolved in the pathogenesis-related proteins that accumulate at cold temperatures in winter rye to confer upon these proteins the ability to bind to ice.
Full Text
The Full Text of this article is available as a PDF (2.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brush R. A., Griffith M., Mlynarz A. Characterization and Quantification of Intrinsic Ice Nucleators in Winter Rye (Secale cereale) Leaves. Plant Physiol. 1994 Feb;104(2):725–735. doi: 10.1104/pp.104.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duman J. G. Purification and characterization of a thermal hysteresis protein from a plant, the bittersweet nightshade Solanum dulcamara. Biochim Biophys Acta. 1994 May 18;1206(1):129–135. doi: 10.1016/0167-4838(94)90081-7. [DOI] [PubMed] [Google Scholar]
- Ewart K. V., Fletcher G. L. Herring antifreeze protein: primary structure and evidence for a C-type lectin evolutionary origin. Mol Mar Biol Biotechnol. 1993 Feb;2(1):20–27. [PubMed] [Google Scholar]
- Ewart K. V., Rubinsky B., Fletcher G. L. Structural and functional similarity between fish antifreeze proteins and calcium-dependent lectins. Biochem Biophys Res Commun. 1992 May 29;185(1):335–340. doi: 10.1016/s0006-291x(05)90005-3. [DOI] [PubMed] [Google Scholar]
- Griffith M., Ala P., Yang D. S., Hon W. C., Moffatt B. A. Antifreeze protein produced endogenously in winter rye leaves. Plant Physiol. 1992 Oct;100(2):593–596. doi: 10.1104/pp.100.2.593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gross D. C., Proebsting E. L., Maccrindle-Zimmerman H. Development, distribution, and characteristics of intrinsic, nonbacterial ice nuclei in prunus wood. Plant Physiol. 1988 Nov;88(3):915–922. doi: 10.1104/pp.88.3.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hejgaard J., Jacobsen S., Svendsen I. Two antifungal thaumatin-like proteins from barley grain. FEBS Lett. 1991 Oct 7;291(1):127–131. doi: 10.1016/0014-5793(91)81119-s. [DOI] [PubMed] [Google Scholar]
- Hon W. C., Griffith M., Chong P., Yang DSC. Extraction and Isolation of Antifreeze Proteins from Winter Rye (Secale cereale L.) Leaves. Plant Physiol. 1994 Mar;104(3):971–980. doi: 10.1104/pp.104.3.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huner N. P., Macdowall D. H. Chloroplastic proteins of wheat and rye grown at warm and cold-hardening temperatures. Can J Biochem. 1976 Oct;54(10):848–853. doi: 10.1139/o76-122. [DOI] [PubMed] [Google Scholar]
- Huynh Q. K., Hironaka C. M., Levine E. B., Smith C. E., Borgmeyer J. R., Shah D. M. Antifungal proteins from plants. Purification, molecular cloning, and antifungal properties of chitinases from maize seed. J Biol Chem. 1992 Apr 5;267(10):6635–6640. [PubMed] [Google Scholar]
- Knight C. A., Driggers E., DeVries A. L. Adsorption to ice of fish antifreeze glycopeptides 7 and 8. Biophys J. 1993 Jan;64(1):252–259. doi: 10.1016/S0006-3495(93)81361-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Leah R., Tommerup H., Svendsen I., Mundy J. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J Biol Chem. 1991 Jan 25;266(3):1564–1573. [PubMed] [Google Scholar]
- Legrand M., Kauffmann S., Geoffroy P., Fritig B. Biological function of pathogenesis-related proteins: Four tobacco pathogenesis-related proteins are chitinases. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6750–6754. doi: 10.1073/pnas.84.19.6750. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Molano J., Durán A., Cabib E. A rapid and sensitive assay for chitinase using tritiated chitin. Anal Biochem. 1977 Dec;83(2):648–656. doi: 10.1016/0003-2697(77)90069-0. [DOI] [PubMed] [Google Scholar]
- Mueller G. M., Wolber P. K., Warren G. J. Clustering of ice nucleation protein correlates with ice nucleation activity. Cryobiology. 1990 Aug;27(4):416–422. doi: 10.1016/0011-2240(90)90018-y. [DOI] [PubMed] [Google Scholar]
- Ng N. F., Hew C. L. Structure of an antifreeze polypeptide from the sea raven. Disulfide bonds and similarity to lectin-binding proteins. J Biol Chem. 1992 Aug 15;267(23):16069–16075. [PubMed] [Google Scholar]
- Olien C. R. Interference of cereal polymers and related compounds with freezing. Cryobiology. 1965 Sep-Oct;2(2):47–54. doi: 10.1016/s0011-2240(65)80111-0. [DOI] [PubMed] [Google Scholar]
- Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raymond J. A., DeVries A. L. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2589–2593. doi: 10.1073/pnas.74.6.2589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shinshi H., Wenzler H., Neuhaus J. M., Felix G., Hofsteenge J., Meins F. Evidence for N- and C-terminal processing of a plant defense-related enzyme: Primary structure of tobacco prepro-beta-1,3-glucanase. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5541–5545. doi: 10.1073/pnas.85.15.5541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sicheri F., Yang D. S. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature. 1995 Jun 1;375(6530):427–431. doi: 10.1038/375427a0. [DOI] [PubMed] [Google Scholar]
- Stintzi A., Heitz T., Prasad V., Wiedemann-Merdinoglu S., Kauffmann S., Geoffroy P., Legrand M., Fritig B. Plant 'pathogenesis-related' proteins and their role in defense against pathogens. Biochimie. 1993;75(8):687–706. doi: 10.1016/0300-9084(93)90100-7. [DOI] [PubMed] [Google Scholar]
- Urrutia M. E., Duman J. G., Knight C. A. Plant thermal hysteresis proteins. Biochim Biophys Acta. 1992 May 22;1121(1-2):199–206. doi: 10.1016/0167-4838(92)90355-h. [DOI] [PubMed] [Google Scholar]
- Wen D., Laursen R. A. Structure-function relationships in an antifreeze polypeptide. The role of neutral, polar amino acids. J Biol Chem. 1992 Jul 15;267(20):14102–14108. [PubMed] [Google Scholar]
- Yang D. S., Sax M., Chakrabartty A., Hew C. L. Crystal structure of an antifreeze polypeptide and its mechanistic implications. Nature. 1988 May 19;333(6170):232–237. doi: 10.1038/333232a0. [DOI] [PubMed] [Google Scholar]
- Zhu B., Chen T. H., Li P. H. Expression of an ABA-responsive osmotin-like gene during the induction of freezing tolerance in Solanum commersonii. Plant Mol Biol. 1993 Feb;21(4):729–735. doi: 10.1007/BF00014558. [DOI] [PubMed] [Google Scholar]
