Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Nov;109(3):899–905. doi: 10.1104/pp.109.3.899

Electron Transport Controls Glutamine Synthetase Activity in the Facultative Heterotrophic Cyanobacterium Synechocystis sp. PCC 6803.

J C Reyes 1, J L Crespo 1, M Garcia-Dominguez 1, F J Florencio 1
PMCID: PMC161391  PMID: 12228640

Abstract

Glutamine synthetase (GS) from Synechocystis sp. PCC 6803 was inactivated in vivo by transferring cells from light to darkness or by incubation with the photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea but not with 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone. Addition of glucose prevented both dark and 3-(3,4-dichlorophenyl)-1,1-dimethylurea GS inactivation. In a Synechocystis psbE-psbF mutant (T1297) lacking photosystem II, glucose was required to maintain active GS, even in the light. However, in nitrogen-starved T1297 cells the removal of glucose did not affect GS activity. The fact that dark-inactivated GS was reactivated in vitro by the same treatments that reactivate the ammonium-inactivated GS points out that both nitrogen metabolism and redox state of the cells lead to the same molecular regulatory mechanism in the control of GS activity. Using GS antibodies we detected that dark-inactivated GS displayed a different electrophoretic migration with respect to the active form in nondenaturing polyacrylamide gel electrophoresis but not in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The possible pathway to modulate GS activity by the electron transport flow in Synechocystis cells is discussed.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Campbell D., Houmard J., De Marsac N. T. Electron Transport Regulates Cellular Differentiation in the Filamentous Cyanobacterium Calothrix. Plant Cell. 1993 Apr;5(4):451–463. doi: 10.1105/tpc.5.4.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Flores E., Schmetterer G. Interaction of fructose with the glucose permease of the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol. 1986 May;166(2):693–696. doi: 10.1128/jb.166.2.693-696.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Forchhammer K., Tandeau de Marsac N. The PII protein in the cyanobacterium Synechococcus sp. strain PCC 7942 is modified by serine phosphorylation and signals the cellular N-status. J Bacteriol. 1994 Jan;176(1):84–91. doi: 10.1128/jb.176.1.84-91.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Harrison M. A., Keen J. N., Findlay J. B., Allen J. F. Modification of a glnB-like gene product by photosynthetic electron transport in the cyanobacterium Synechococcus 6301. FEBS Lett. 1990 May 7;264(1):25–28. doi: 10.1016/0014-5793(90)80755-8. [DOI] [PubMed] [Google Scholar]
  6. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  7. Lara C., Romero J. M., Guerrero M. G. Regulated nitrate transport in the cyanobacterium Anacystis nidulans. J Bacteriol. 1987 Sep;169(9):4376–4378. doi: 10.1128/jb.169.9.4376-4378.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lehmann M., Wöber G. Accumulation, mobilization and turn-over of glycogen in the blue-green bacterium Anacystis nidulans. Arch Microbiol. 1976 Dec 1;111(1-2):93–97. doi: 10.1007/BF00446554. [DOI] [PubMed] [Google Scholar]
  9. Muro-Pastor M. I., Florencio F. J. Purification and properties of NADP-isocitrate dehydrogenase from the unicellular cyanobacterium Synechocystis sp. PCC 6803. Eur J Biochem. 1992 Jan 15;203(1-2):99–105. doi: 10.1111/j.1432-1033.1992.tb19833.x. [DOI] [PubMed] [Google Scholar]
  10. Mérida A., Candau P., Florencio F. J. Regulation of glutamine synthetase activity in the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 by the nitrogen source: effect of ammonium. J Bacteriol. 1991 Jul;173(13):4095–4100. doi: 10.1128/jb.173.13.4095-4100.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mérida A., Leurentop L., Candau P., Florencio F. J. Purification and properties of glutamine synthetases from the cyanobacteria Synechocystis sp. strain PCC 6803 and Calothrix sp. strain PCC 7601. J Bacteriol. 1990 Aug;172(8):4732–4735. doi: 10.1128/jb.172.8.4732-4735.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pakrasi H. B., Williams J. G., Arntzen C. J. Targeted mutagenesis of the psbE and psbF genes blocks photosynthetic electron transport: evidence for a functional role of cytochrome b559 in photosystem II. EMBO J. 1988 Feb;7(2):325–332. doi: 10.1002/j.1460-2075.1988.tb02816.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Penefsky H. S. Reversible binding of Pi by beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1977 May 10;252(9):2891–2899. [PubMed] [Google Scholar]
  14. Reyes J. C., Florencio F. J. A new type of glutamine synthetase in cyanobacteria: the protein encoded by the glnN gene supports nitrogen assimilation in Synechocystis sp. strain PCC 6803. J Bacteriol. 1994 Mar;176(5):1260–1267. doi: 10.1128/jb.176.5.1260-1267.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Reyes J. C., Florencio F. J. A novel mechanism of glutamine synthetase inactivation by ammonium in the cyanobacterium Synechocystis sp. PCC 6803. Involvement of an inactivating protein. FEBS Lett. 1995 Jun 19;367(1):45–48. doi: 10.1016/0014-5793(95)00544-j. [DOI] [PubMed] [Google Scholar]
  16. Tischner R. Regulation of Glutamine Synthetase by Light and during Nitrogen Deficiency in Synchronous Chlorella sorokiniana. Plant Physiol. 1980 Nov;66(5):805–808. doi: 10.1104/pp.66.5.805. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES