Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Nov;109(3):907–915. doi: 10.1104/pp.109.3.907

Aging of Dry Desiccation-Tolerant Pollen Does Not Affect Protein Secondary Structure.

W F Wolkers 1, F A Hoekstra 1
PMCID: PMC161392  PMID: 12228641

Abstract

Protein secondary structure and membrane phase behavior in aging Typha latifolia pollen were studied by means of Fourier transform infrared microspectroscopy (FTIR). Membranes isolated from fresh pollen occurred mainly in the liquid crystalline phase at room temperature, whereas the membrane fluidity of aged pollen was drastically decreased. This decrease did not result in large-scale irreversible protein aggregation, as was concluded from in situ FTIR assessment of the amide-1 bands. Curve-fitting on the infrared absorbance spectra enabled estimation of the proportion of different classes of protein secondary structure. Membrane proteins had a relatively large amount of [alpha]-helical structure (48%; band at 1658 cm-1), and turn-like structures (at 1637 and 1680 cm-1) were also detected. The secondary protein structure of isolated cytoplasmic proteins resembled that of proteins in whole pollen and was conserved upon drying in the absence of sucrose. The isolated cytoplasmic proteins had a large amount of [alpha]-helical structure (43%), and also [beta]-sheet (at 1637 and 1692 cm-1) and turn structures were detected. Heat-denaturing experiments with intact hydrated pollen showed low (1627 cm-1) and high (1692 cm-1) wave number bands indicating irreversible protein aggregates. The results presented in this paper show that FTIR is an extremely suitable technique to study protein secondary structure in intact plant cells of different hydration levels and developmental stages.

Full Text

The Full Text of this article is available as a PDF (838.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrondo J. L., Castresana J., Valpuesta J. M., Goñi F. M. Structure and thermal denaturation of crystalline and noncrystalline cytochrome oxidase as studied by infrared spectroscopy. Biochemistry. 1994 Sep 27;33(38):11650–11655. doi: 10.1021/bi00204a029. [DOI] [PubMed] [Google Scholar]
  2. Bandekar J. Amide modes and protein conformation. Biochim Biophys Acta. 1992 Apr 8;1120(2):123–143. doi: 10.1016/0167-4838(92)90261-b. [DOI] [PubMed] [Google Scholar]
  3. Blume A., Hübner W., Messner G. Fourier transform infrared spectroscopy of 13C = O-labeled phospholipids hydrogen bonding to carbonyl groups. Biochemistry. 1988 Oct 18;27(21):8239–8249. doi: 10.1021/bi00421a038. [DOI] [PubMed] [Google Scholar]
  4. Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
  5. Carpenter J. F., Crowe J. H. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry. 1989 May 2;28(9):3916–3922. doi: 10.1021/bi00435a044. [DOI] [PubMed] [Google Scholar]
  6. Chirgadze Y. N., Fedorov O. V., Trushina N. P. Estimation of amino acid residue side-chain absorption in the infrared spectra of protein solutions in heavy water. Biopolymers. 1975 Apr;14(4):679–694. doi: 10.1002/bip.1975.360140402. [DOI] [PubMed] [Google Scholar]
  7. Crowe J. H., Crowe L. M., Carpenter J. F., Aurell Wistrom C. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J. 1987 Feb 15;242(1):1–10. doi: 10.1042/bj2420001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crowe J. H., Crowe L. M., Hoekstra F. A. Phase transitions and permeability changes in dry membranes during rehydration. J Bioenerg Biomembr. 1989 Feb;21(1):77–91. doi: 10.1007/BF00762213. [DOI] [PubMed] [Google Scholar]
  9. Crowe J. H., Leslie S. B., Crowe L. M. Is vitrification sufficient to preserve liposomes during freeze-drying? Cryobiology. 1994 Aug;31(4):355–366. doi: 10.1006/cryo.1994.1043. [DOI] [PubMed] [Google Scholar]
  10. Crowe J. H., McKersie B. D., Crowe L. M. Effects of free fatty acids and transition temperature on the stability of dry liposomes. Biochim Biophys Acta. 1989 Feb 13;979(1):7–10. doi: 10.1016/0005-2736(89)90516-6. [DOI] [PubMed] [Google Scholar]
  11. Engelman D. M., Steitz T. A., Goldman A. Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annu Rev Biophys Biophys Chem. 1986;15:321–353. doi: 10.1146/annurev.bb.15.060186.001541. [DOI] [PubMed] [Google Scholar]
  12. Finer E. G., Darke A. Phospholipid hydration studied by deuteron magnetic resonace spectroscopy. Chem Phys Lipids. 1974 Feb;12(1):1–16. doi: 10.1016/0009-3084(74)90064-4. [DOI] [PubMed] [Google Scholar]
  13. Garcia-Quintana D., Garriga P., Manyosa J. Quantitative characterization of the structure of rhodopsin in disc membrane by means of Fourier transform infrared spectroscopy. J Biol Chem. 1993 Feb 5;268(4):2403–2409. [PubMed] [Google Scholar]
  14. Haris P. I., Chapman D. Does Fourier-transform infrared spectroscopy provide useful information on protein structures? Trends Biochem Sci. 1992 Sep;17(9):328–333. doi: 10.1016/0968-0004(92)90305-s. [DOI] [PubMed] [Google Scholar]
  15. Hemminga M. A., Sanders J. C., Spruijt R. B. Spectroscopy of lipid-protein interactions: structural aspects of two different forms of the coat protein of bacteriophage M13 incorporated in model membranes. Prog Lipid Res. 1992;31(3):301–333. doi: 10.1016/0163-7827(92)90011-7. [DOI] [PubMed] [Google Scholar]
  16. Hoekstra F. A., Crowe J. H., Crowe L. M. Effect of Sucrose on Phase Behavior of Membranes in Intact Pollen of Typha latifolia L., as Measured with Fourier Transform Infrared Spectroscopy. Plant Physiol. 1991 Nov;97(3):1073–1079. doi: 10.1104/pp.97.3.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ismail A. A., Mantsch H. H., Wong P. T. Aggregation of chymotrypsinogen: portrait by infrared spectroscopy. Biochim Biophys Acta. 1992 May 22;1121(1-2):183–188. doi: 10.1016/0167-4838(92)90353-f. [DOI] [PubMed] [Google Scholar]
  18. Mantsch H. H., Perczel A., Hollósi M., Fasman G. D. Characterization of beta-turns in cyclic hexapeptides in solution by Fourier transform IR spectroscopy. Biopolymers. 1993 Feb;33(2):201–207. doi: 10.1002/bip.360330202. [DOI] [PubMed] [Google Scholar]
  19. Prestrelski S. J., Tedeschi N., Arakawa T., Carpenter J. F. Dehydration-induced conformational transitions in proteins and their inhibition by stabilizers. Biophys J. 1993 Aug;65(2):661–671. doi: 10.1016/S0006-3495(93)81120-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rüegg M., Moor U., Blanc B. Hydration and thermal denaturation of beta-lactoglobulin. A calorimetric study. Biochim Biophys Acta. 1975 Aug 19;400(2):334–342. doi: 10.1016/0005-2795(75)90188-9. [DOI] [PubMed] [Google Scholar]
  21. Sanders J. C., Haris P. I., Chapman D., Otto C., Hemminga M. A. Secondary structure of M13 coat protein in phospholipids studied by circular dichroism, Raman, and Fourier transform infrared spectroscopy. Biochemistry. 1993 Nov 23;32(46):12446–12454. doi: 10.1021/bi00097a024. [DOI] [PubMed] [Google Scholar]
  22. Sarver R. W., Jr, Krueger W. C. Infrared investigation on the conformation of proteins deposited on polyethylene films. Anal Biochem. 1993 Aug 1;212(2):519–525. doi: 10.1006/abio.1993.1362. [DOI] [PubMed] [Google Scholar]
  23. Surewicz W. K., Mantsch H. H., Chapman D. Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry. 1993 Jan 19;32(2):389–394. doi: 10.1021/bi00053a001. [DOI] [PubMed] [Google Scholar]
  24. Surewicz W. K., Mantsch H. H. New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim Biophys Acta. 1988 Jan 29;952(2):115–130. doi: 10.1016/0167-4838(88)90107-0. [DOI] [PubMed] [Google Scholar]
  25. Susi H., Timasheff S. N., Stevens L. Infrared spectra and protein conformations in aqueous solutions. I. The amide I band in H2O and D2O solutions. J Biol Chem. 1967 Dec 10;242(23):5460–5466. [PubMed] [Google Scholar]
  26. Van Bilsen DGJL., Hoekstra F. A., Crowe L. M., Crowe J. H. Altered Phase Behavior in Membranes of Aging Dry Pollen May Cause Imbibitional Leakage. Plant Physiol. 1994 Apr;104(4):1193–1199. doi: 10.1104/pp.104.4.1193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Van Bilsen DGJL., Hoekstra F. A. Decreased Membrane Integrity in Aging Typha latifolia L.Pollen (Accumulation of Lysolipids and Free Fatty Acids). Plant Physiol. 1993 Feb;101(2):675–682. doi: 10.1104/pp.101.2.675. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES