Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Nov;109(3):973–981. doi: 10.1104/pp.109.3.973

Sugar-Induced Increase of Calcium-Dependent Protein Kinases Associated with the Plasma Membrane in Leaf Tissues of Tobacco.

Ma Ohto 1, K Nakamura 1
PMCID: PMC161399  PMID: 12228646

Abstract

The sugar-inducible expression of genes for sporamin and [beta]-amylase in leaf explants of sweet potato (Ipomoea batatas) and that of a [beta]-glucuronidase-fusion gene, with the promoter of the gene for [beta]-amylase in leaves of tobacco (Nicotiana tabacum), requires Ca2+ signaling (M. Ohto, K. Hayashi, M. Isobe, K. Nakamura [1995] Plant J 7: 297-307), and it was inhibited by staurosporin and K252a, inhibitors of protein kinases. Autophosphorylation activities of several potential protein kinases in leaves of tobacco were significantly higher in younger leaves than in mature leaves. However, the autophosphorylation activities of these proteins in mature leaves, especially those of the major autophosphorylatable proteins with apparent molecular masses of 56 and 54 kD, increased upon treatment of leaf discs with a 0.3 M solution of sucrose, glucose, or fructose, did not increase with sorbitol or mannitol treatments, and the increase by sucrose was inhibited by cycloheximide. Autophosphorylation of the 56- and 54-kD protein in vitro was dependent on Ca2+ and inhibited by staurosporine, K-252a, and by W-7. These results suggest that they belong to the family of calcium-dependent protein kinases. They were concentrated in the plasma membrane fraction and were released from membrane vesicles by high salt or with sodium carbonate. The possible functions of these sugar-inducible calcium-dependent protein kinases associated with the plasma membrane are discussed.

Full Text

The Full Text of this article is available as a PDF (3.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheng C. L., Acedo G. N., Cristinsin M., Conkling M. A. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1861–1864. doi: 10.1073/pnas.89.5.1861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DasGupta M. Characterization of a calcium-dependent protein kinase from Arachis hypogea (groundnut) seeds. Plant Physiol. 1994 Mar;104(3):961–969. doi: 10.1104/pp.104.3.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Epstein P. N., Boschero A. C., Atwater I., Cai X., Overbeek P. A. Expression of yeast hexokinase in pancreatic beta cells of transgenic mice reduces blood glucose, enhances insulin secretion, and decreases diabetes. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12038–12042. doi: 10.1073/pnas.89.24.12038. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Harmon A. C., Putnam-Evans C., Cormier M. J. A calcium-dependent but calmodulin-independent protein kinase from soybean. Plant Physiol. 1987 Apr;83(4):830–837. doi: 10.1104/pp.83.4.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Harmon A. C., Yoo B. C., McCaffery C. Pseudosubstrate inhibition of CDPK, a protein kinase with a calmodulin-like domain. Biochemistry. 1994 Jun 14;33(23):7278–7287. doi: 10.1021/bi00189a032. [DOI] [PubMed] [Google Scholar]
  6. Harper J. F., Huang J. F., Lloyd S. J. Genetic identification of an autoinhibitor in CDPK, a protein kinase with a calmodulin-like domain. Biochemistry. 1994 Jun 14;33(23):7267–7277. doi: 10.1021/bi00189a031. [DOI] [PubMed] [Google Scholar]
  7. Hirayama T., Oka A. Novel protein kinase of Arabidopsis thaliana (APK1) that phosphorylates tyrosine, serine and threonine. Plant Mol Biol. 1992 Nov;20(4):653–662. doi: 10.1007/BF00046450. [DOI] [PubMed] [Google Scholar]
  8. Huber S. C., Huber J. L. Role of sucrose-phosphate synthase in sucrose metabolism in leaves. Plant Physiol. 1992 Aug;99(4):1275–1278. doi: 10.1104/pp.99.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kase H., Iwahashi K., Nakanishi S., Matsuda Y., Yamada K., Takahashi M., Murakata C., Sato A., Kaneko M. K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases. Biochem Biophys Res Commun. 1987 Jan 30;142(2):436–440. doi: 10.1016/0006-291x(87)90293-2. [DOI] [PubMed] [Google Scholar]
  10. Knight M. R., Campbell A. K., Smith S. M., Trewavas A. J. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature. 1991 Aug 8;352(6335):524–526. doi: 10.1038/352524a0. [DOI] [PubMed] [Google Scholar]
  11. Koch K. E., Nolte K. D., Duke E. R., McCarty D. R., Avigne W. T. Sugar Levels Modulate Differential Expression of Maize Sucrose Synthase Genes. Plant Cell. 1992 Jan;4(1):59–69. doi: 10.1105/tpc.4.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Li H., Dauwalder M., Roux S. J. Partial purification and characterization of a Ca(2+)-dependent protein kinase from pea nuclei. Plant Physiol. 1991;96:720–727. doi: 10.1104/pp.96.3.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mason H. S., Dewald D. B., Creelman R. A., Mullet J. E. Coregulation of soybean vegetative storage protein gene expression by methyl jasmonate and soluble sugars. Plant Physiol. 1992 Mar;98(3):859–867. doi: 10.1104/pp.98.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Morikami A., Ehara G., Yuuki K., Nakamura K. Molecular cloning and characterization of cDNAs for the gamma- and epsilon-subunits of mitochondrial F1F0 ATP synthase from the sweet potato. J Biol Chem. 1993 Aug 15;268(23):17205–17210. [PubMed] [Google Scholar]
  16. Müller-Röber B. T., Kossmann J., Hannah L. C., Willmitzer L., Sonnewald U. One of two different ADP-glucose pyrophosphorylase genes from potato responds strongly to elevated levels of sucrose. Mol Gen Genet. 1990 Oct;224(1):136–146. doi: 10.1007/BF00259460. [DOI] [PubMed] [Google Scholar]
  17. Nakamura K., Ohto M. A., Yoshida N., Nakamura K. Sucrose-Induced Accumulation of beta-Amylase Occurs Concomitant with the Accumulation of Starch and Sporamin in Leaf-Petiole Cuttings of Sweet Potato. Plant Physiol. 1991 Jul;96(3):902–909. doi: 10.1104/pp.96.3.902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ohta S., Hattori T., Morikami A., Nakamura K. High-level expression of a sweet potato sporamin gene promoter: beta-glucuronidase (GUS) fusion gene in the stems of transgenic tobacco plants is conferred by multiple cell type-specific regulatory elements. Mol Gen Genet. 1991 Mar;225(3):369–378. doi: 10.1007/BF00261676. [DOI] [PubMed] [Google Scholar]
  19. Ohto M. A., Nakamura-Kito K., Nakamura K. Induction of Expression of Genes Coding for Sporamin and beta-Amylase by Polygalacturonic Acid in Leaf-Petiole Cuttings of Sweet Potato. Plant Physiol. 1992 Jun;99(2):422–427. doi: 10.1104/pp.99.2.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rocha-Sosa M., Sonnewald U., Frommer W., Stratmann M., Schell J., Willmitzer L. Both developmental and metabolic signals activate the promoter of a class I patatin gene. EMBO J. 1989 Jan;8(1):23–29. doi: 10.1002/j.1460-2075.1989.tb03344.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sadka A., DeWald D. B., May G. D., Park W. D., Mullet J. E. Phosphate Modulates Transcription of Soybean VspB and Other Sugar-Inducible Genes. Plant Cell. 1994 May;6(5):737–749. doi: 10.1105/tpc.6.5.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schaller G. E., Harmon A. C., Sussman M. R. Characterization of a calcium- and lipid-dependent protein kinase associated with the plasma membrane of oat. Biochemistry. 1992 Feb 18;31(6):1721–1727. doi: 10.1021/bi00121a020. [DOI] [PubMed] [Google Scholar]
  23. Sheen J. Metabolic repression of transcription in higher plants. Plant Cell. 1990 Oct;2(10):1027–1038. doi: 10.1105/tpc.2.10.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Takeda S., Mano S., Ohto Ma., Nakamura K. Inhibitors of Protein Phosphatases 1 and 2A Block the Sugar-Inducible Gene Expression in Plants. Plant Physiol. 1994 Oct;106(2):567–574. doi: 10.1104/pp.106.2.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Verhey S. D., Gaiser J. C., Lomax T. L. Protein Kinases in Zucchini (Characterization of Calcium-Requiring Plasma Membrane Kinases). Plant Physiol. 1993 Oct;103(2):413–419. doi: 10.1104/pp.103.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Visser R. G., Stolte A., Jacobsen E. Expression of a chimaeric granule-bound starch synthase-GUS gene in transgenic potato plants. Plant Mol Biol. 1991 Oct;17(4):691–699. doi: 10.1007/BF00037054. [DOI] [PubMed] [Google Scholar]
  27. Weaver C. D., Roberts D. M. Determination of the site of phosphorylation of nodulin 26 by the calcium-dependent protein kinase from soybean nodules. Biochemistry. 1992 Sep 22;31(37):8954–8959. doi: 10.1021/bi00152a035. [DOI] [PubMed] [Google Scholar]
  28. Yu S. M., Kuo Y. H., Sheu G., Sheu Y. J., Liu L. F. Metabolic derepression of alpha-amylase gene expression in suspension-cultured cells of rice. J Biol Chem. 1991 Nov 5;266(31):21131–21137. [PubMed] [Google Scholar]
  29. Yuasa T., Muto S. Ca(2+)-dependent protein kinase from the halotolerant green alga Dunaliella tertiolecta: partial purification and Ca(2+)-dependent association of the enzyme to the microsomes. Arch Biochem Biophys. 1992 Jul;296(1):175–182. doi: 10.1016/0003-9861(92)90560-j. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES