Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Nov;109(3):983–990. doi: 10.1104/pp.109.3.983

Evidence that spinach leaves express calreticulin but not calsequestrin.

L Navazio 1, B Baldan 1, P Dainese 1, P James 1, E Damiani 1, A Margreth 1, P Mariani 1
PMCID: PMC161400  PMID: 8552722

Abstract

The presence of either calreticulin (CR) or calsequestrin (CS-like proteins in spinach (Spinacia oleracea L.) leaves has been previously described. Here we report the purification from spinach leaves of two highly acidic (isoelectric point 5.2) Ca(2+)-binding proteins of 56 and 54 kD by means of DEAE-cellulose chromatography followed by phenyl-Sepharose chromatography in the presence of Zn(2+) (i.e., under experimental conditions that allowed the purification of CR from human liver). On the other hand, we failed to identify any protein sharing with animal CS the ability to bind to phenyl-Sepharose in the absence of Ca(2+). Based on the N-terminal amino acid sequence, the 56- and 54-kD spinach Ca(2+)-binding proteins were identified as two distinct isoforms of CR. Therefore, we conclude that CR, and not CS, is expressed in spinach leaves. The 56-kD spinach CR isoform was found to be glycosylated, as judged by ligand blot techniques with concanavalin A and affinity chromatography with concanavalin A-Sepharose. Furthermore, the 56-kD CR was found to differ from rabbit liver CR in amino acid sequence, peptide mapping after partial digestion with Staphylococcus aureus V8 protease, pH-dependent shift of electrophoretic mobility, and immunological cross-reactivity with an antiserum raised to spinach CR, indicating a low degree of structural homology with animal CRs.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Burns K., Atkinson E. A., Bleackley R. C., Michalak M. Calreticulin: from Ca2+ binding to control of gene expression. Trends Cell Biol. 1994 May;4(5):152–154. doi: 10.1016/0962-8924(94)90190-2. [DOI] [PubMed] [Google Scholar]
  3. Bush D. S. Regulation of Cytosolic Calcium in Plants. Plant Physiol. 1993 Sep;103(1):7–13. doi: 10.1104/pp.103.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cala S. E., Jones L. R. Rapid purification of calsequestrin from cardiac and skeletal muscle sarcoplasmic reticulum vesicles by Ca2+-dependent elution from phenyl-sepharose. J Biol Chem. 1983 Oct 10;258(19):11932–11936. [PubMed] [Google Scholar]
  5. Chen F., Hayes P. M., Mulrooney D. M., Pan A. Identification and characterization of cDNA clones encoding plant calreticulin in barley. Plant Cell. 1994 Jun;6(6):835–843. doi: 10.1105/tpc.6.6.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  7. Damiani E., Heilmann C., Salvatori S., Margreth A. Characterization of high-capacity low-affinity calcium binding protein of liver endoplasmic reticulum: calsequestrin-like and divergent properties. Biochem Biophys Res Commun. 1989 Dec 29;165(3):973–980. doi: 10.1016/0006-291x(89)92698-3. [DOI] [PubMed] [Google Scholar]
  8. Damiani E., Margreth A. Characterization study of the ryanodine receptor and of calsequestrin isoforms of mammalian skeletal muscles in relation to fibre types. J Muscle Res Cell Motil. 1994 Apr;15(2):86–101. doi: 10.1007/BF00130421. [DOI] [PubMed] [Google Scholar]
  9. Damiani E., Volpe P., Margreth A. Coexpression of two isoforms of calsequestrin in rabbit slow-twitch muscle. J Muscle Res Cell Motil. 1990 Dec;11(6):522–530. doi: 10.1007/BF01745219. [DOI] [PubMed] [Google Scholar]
  10. Dedhar S. Novel functions for calreticulin: interaction with integrins and modulation of gene expression? Trends Biochem Sci. 1994 Jul;19(7):269–271. doi: 10.1016/0968-0004(94)90001-9. [DOI] [PubMed] [Google Scholar]
  11. Denecke J., Carlsson L. E., Vidal S., Höglund A. S., Ek B., van Zeijl M. J., Sinjorgo K. M., Palva E. T. The tobacco homolog of mammalian calreticulin is present in protein complexes in vivo. Plant Cell. 1995 Apr;7(4):391–406. doi: 10.1105/tpc.7.4.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fliegel L., Burns K., MacLennan D. H., Reithmeier R. A., Michalak M. Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum. J Biol Chem. 1989 Dec 25;264(36):21522–21528. [PubMed] [Google Scholar]
  13. Franceschi V. R., Li X., Zhang D., Okita T. W. Calsequestrinlike calcium-binding protein is expressed in calcium-accumulating cells of Pistia stratiotes. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):6986–6990. doi: 10.1073/pnas.90.15.6986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gilroy S., Bethke P. C., Jones R. L. Calcium homeostasis in plants. J Cell Sci. 1993 Oct;106(Pt 2):453–461. doi: 10.1242/jcs.106.2.453. [DOI] [PubMed] [Google Scholar]
  15. Hassan A. M., Wesson C., Trumble W. R. Calreticulin is the major Ca2+ storage protein in the endoplasmic reticulum of the pea plant (Pisum sativum). Biochem Biophys Res Commun. 1995 Jun 6;211(1):54–59. doi: 10.1006/bbrc.1995.1777. [DOI] [PubMed] [Google Scholar]
  16. Heilmann C., Spamer C., Leberer E., Gerok W., Michalak M. Human liver calreticulin: characterization and Zn(2+)-dependent interaction with phenyl-sepharose. Biochem Biophys Res Commun. 1993 Jun 15;193(2):611–616. doi: 10.1006/bbrc.1993.1668. [DOI] [PubMed] [Google Scholar]
  17. Khanna N. C., Tokuda M., Waisman D. M. Comparison of calregulins from vertebrate livers. Biochem J. 1987 Feb 15;242(1):245–251. doi: 10.1042/bj2420245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Krause K. H., Chou M., Thomas M. A., Sjolund R. D., Campbell K. P. Plant cells contain calsequestrin. J Biol Chem. 1989 Mar 15;264(8):4269–4272. [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  21. Matsuoka K., Seta K., Yamakawa Y., Okuyama T., Shinoda T., Isobe T. Covalent structure of bovine brain calreticulin. Biochem J. 1994 Mar 1;298(Pt 2):435–442. doi: 10.1042/bj2980435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Menegazzi P., Guzzo F., Baldan B., Mariani P., Treves S. Purification of calreticulin-like protein(s) from spinach leaves. Biochem Biophys Res Commun. 1993 Feb 15;190(3):1130–1135. doi: 10.1006/bbrc.1993.1167. [DOI] [PubMed] [Google Scholar]
  23. Michalak M., Milner R. E., Burns K., Opas M. Calreticulin. Biochem J. 1992 Aug 1;285(Pt 3):681–692. doi: 10.1042/bj2850681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  25. Nash P. D., Opas M., Michalak M. Calreticulin: not just another calcium-binding protein. Mol Cell Biochem. 1994 Jun 15;135(1):71–78. doi: 10.1007/BF00925962. [DOI] [PubMed] [Google Scholar]
  26. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  27. Peter F., Nguyen Van P., Söling H. D. Different sorting of Lys-Asp-Glu-Leu proteins in rat liver. J Biol Chem. 1992 May 25;267(15):10631–10637. [PubMed] [Google Scholar]
  28. Saito A., Seiler S., Chu A., Fleischer S. Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J Cell Biol. 1984 Sep;99(3):875–885. doi: 10.1083/jcb.99.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Slupsky J. R., Ohnishi M., Carpenter M. R., Reithmeier R. A. Characterization of cardiac calsequestrin. Biochemistry. 1987 Oct 6;26(20):6539–6544. doi: 10.1021/bi00394a038. [DOI] [PubMed] [Google Scholar]
  30. Treves S., De Mattei M., Landfredi M., Villa A., Green N. M., MacLennan D. H., Meldolesi J., Pozzan T. Calreticulin is a candidate for a calsequestrin-like function in Ca2(+)-storage compartments (calciosomes) of liver and brain. Biochem J. 1990 Oct 15;271(2):473–480. doi: 10.1042/bj2710473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  32. Zorzato F., Volpe P. Calcium binding proteins of junctional sarcoplasmic reticulum: detection by 45Ca ligand overlay. Arch Biochem Biophys. 1988 Mar;261(2):324–329. doi: 10.1016/0003-9861(88)90347-5. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES