Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Nov;109(3):1007–1016. doi: 10.1104/pp.109.3.1007

Fractionation and Structural Characterization of Arabinogalactan-Proteins from the Cell Wall of Rose Cells.

M D Serpe 1, E A Nothnagel 1
PMCID: PMC161403  PMID: 12228648

Abstract

Arabinogalactan-proteins (AGPs) have been purified from Paul's Scarlet rose (Rosa sp.) cell walls. As estimated by gel permeation chromatography, the apparent molecular masses of the two major cell-wall AGP fractions were 130 and 242 kD. Since the 130-kD AGP had a ratio of arabinose/glucuronic acid that was 12 times higher than that of the 242-kD AGP, the fractions were named cell-wall AGP1 (CW-AGP1) and glucuronogalactan-protein (GGP), respectively. CW-AGP1 and GGP contained predominantly t-arabinofuranosyl residues; 3-linked, 6-linked, and 3,6-branched galactopyranosyl residues; and 4-linked and t-glucuronopyranosyl residues. The 1H-nuclear magnetic resonance spectra of CW-AGP1 and GGP showed that the arabinofuranosyl and galactopyranosyl residues were predominantly in [alpha]- and [beta]-anomeric configuration, respectively, and that GGP contained a few O-acetyl residues. The protein moieties of CW-AGP1 and GGP were both rich in hydroxyproline and alanine but differed in the percentage of various amino acids, including hydroxyproline, alanine, serine, and glycine. Cell-wall AGPs bound to ([beta]-D-glucosyl)3 Yariv phenylglycoside, but the stoichiometry of binding was about 6 times greater in GGP than in other Rosa AGPs. GGP seems to be peculiar to the cell wall, since no similar molecule was found in the culture medium.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin T. C., McCann M. C., Roberts K. A Novel Hydroxyproline-Deficient Arabinogalactan Protein Secreted by Suspension-Cultured Cells of Daucus carota (Purification and Partial Characterization). Plant Physiol. 1993 Sep;103(1):115–123. doi: 10.1104/pp.103.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen C. G., Pu Z. Y., Moritz R. L., Simpson R. J., Bacic A., Clarke A. E., Mau S. L. Molecular cloning of a gene encoding an arabinogalactan-protein from pear (Pyrus communis) cell suspension culture. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10305–10309. doi: 10.1073/pnas.91.22.10305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. De Ruiter G. A., Schols H. A., Voragen A. G., Rombouts F. M. Carbohydrate analysis of water-soluble uronic acid-containing polysaccharides with high-performance anion-exchange chromatography using methanolysis combined with TFA hydrolysis is superior to four other methods. Anal Biochem. 1992 Nov 15;207(1):176–185. doi: 10.1016/0003-2697(92)90520-h. [DOI] [PubMed] [Google Scholar]
  4. Du H., Simpson R. J., Moritz R. L., Clarke A. E., Bacic A. Isolation of the protein backbone of an arabinogalactan-protein from the styles of Nicotiana alata and characterization of a corresponding cDNA. Plant Cell. 1994 Nov;6(11):1643–1653. doi: 10.1105/tpc.6.11.1643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fournet B., Strecker G., Leroy Y., Montreuil J. Gas--liquid chromatography and mass spectrometry of methylated and acetylated methyl glycosides. Application to the structural analysis of glycoprotein glycans. Anal Biochem. 1981 Sep 15;116(2):489–502. doi: 10.1016/0003-2697(81)90393-6. [DOI] [PubMed] [Google Scholar]
  6. Gleeson P. A., McNamara M., Wettenhall R. E., Stone B. A., Fincher G. B. Characterization of the hydroxyproline-rich protein core of an arabinogalactan-protein secreted from suspension-cultured Lolium multiflorum (Italian ryegrass) endosperm cells. Biochem J. 1989 Dec 15;264(3):857–862. doi: 10.1042/bj2640857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Harris P. J., Henry R. J., Blakeney A. B., Stone B. A. An improved procedure for the methylation analysis of oligosaccharides and polysaccharides. Carbohydr Res. 1984 Apr 2;127(1):59–73. doi: 10.1016/0008-6215(84)85106-x. [DOI] [PubMed] [Google Scholar]
  8. Herman E. M., Lamb C. J. Arabinogalactan-rich glycoproteins are localized on the cell surface and in intravacuolar multivesicular bodies. Plant Physiol. 1992 Jan;98(1):264–272. doi: 10.1104/pp.98.1.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kieliszewski M. J., Kamyab A., Leykam J. F., Lamport D. T. A Histidine-Rich Extensin from Zea mays Is an Arabinogalactan Protein. Plant Physiol. 1992 Jun;99(2):538–547. doi: 10.1104/pp.99.2.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kikuchi S., Ohinata A., Tsumuraya Y., Hashimoto Y., Kaneko Y., Matsushima H. Production and characterization of antibodies to the beta-(1-->6)-galactotetraosyl group and their interaction with arabinogalactan-proteins. Planta. 1993;190(4):525–535. doi: 10.1007/BF00224792. [DOI] [PubMed] [Google Scholar]
  11. Komalavilas P., Zhu J. K., Nothnagel E. A. Arabinogalactan-proteins from the suspension culture medium and plasma membrane of rose cells. J Biol Chem. 1991 Aug 25;266(24):15956–15965. [PubMed] [Google Scholar]
  12. Lind J. L., Bacic A., Clarke A. E., Anderson M. A. A style-specific hydroxyproline-rich glycoprotein with properties of both extensins and arabinogalactan proteins. Plant J. 1994 Oct;6(4):491–502. doi: 10.1046/j.1365-313x.1994.6040491.x. [DOI] [PubMed] [Google Scholar]
  13. Mort A. J., Parker S., Kuo M. S. Recovery of methylated saccharides from methylation reaction mixtures using Sep-Pak C18 cartridges. Anal Biochem. 1983 Sep;133(2):380–384. doi: 10.1016/0003-2697(83)90098-2. [DOI] [PubMed] [Google Scholar]
  14. Nothnagel E. A., Lyon J. L. Structural requirements for the binding of phenylglycosides to the surface of protoplasts. Plant Physiol. 1986 Jan;80(1):91–98. doi: 10.1104/pp.80.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. O'Neill M. A., Selvendran R. R. Hemicellulosic complexes from the cell walls of runner bean (Phaseolus coccineus). Biochem J. 1985 Apr 15;227(2):475–481. doi: 10.1042/bj2270475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pennell R. I., Janniche L., Kjellbom P., Scofield G. N., Peart J. M., Roberts K. Developmental Regulation of a Plasma Membrane Arabinogalactan Protein Epitope in Oilseed Rape Flowers. Plant Cell. 1991 Dec;3(12):1317–1326. doi: 10.1105/tpc.3.12.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pennell R. I., Knox J. P., Scofield G. N., Selvendran R. R., Roberts K. A family of abundant plasma membrane-associated glycoproteins related to the arabinogalactan proteins is unique to flowering plants. J Cell Biol. 1989 May;108(5):1967–1977. doi: 10.1083/jcb.108.5.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pope D. G. Relationships between Hydroxyproline-containing Proteins Secreted into the Cell Wall and Medium by Suspension-cultured Acer pseudoplatanus Cells. Plant Physiol. 1977 May;59(5):894–900. doi: 10.1104/pp.59.5.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Qi W., Fong C., Lamport D. T. Gum arabic glycoprotein is a twisted hairy rope : a new model based on o-galactosylhydroxyproline as the polysaccharide attachment site. Plant Physiol. 1991 Jul;96(3):848–855. doi: 10.1104/pp.96.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Roberts K. The plant extracellular matrix: in a new expansive mood. Curr Opin Cell Biol. 1994 Oct;6(5):688–694. doi: 10.1016/0955-0674(94)90095-7. [DOI] [PubMed] [Google Scholar]
  21. Saulnier L., Brillouet J. M., Moutounet M., Hervé du Penhoat C., Michon V. New investigations of the structure of grape arabinogalactan-protein. Carbohydr Res. 1992 Feb 7;224:219–235. doi: 10.1016/0008-6215(92)84108-5. [DOI] [PubMed] [Google Scholar]
  22. Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
  23. Tsumuraya Y., Ogura K., Hashimoto Y., Mukoyama H., Yamamoto S. Arabinogalactan-Proteins from Primary and Mature Roots of Radish (Raphanus sativus L.). Plant Physiol. 1988 Jan;86(1):155–160. doi: 10.1104/pp.86.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Van Holst G. J., Klis F. M. Hydroxyproline Glycosides in Secretory Arabinogalactan-Protein of Phaseolus vulgaris L. Plant Physiol. 1981 Oct;68(4):979–980. doi: 10.1104/pp.68.4.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. YARIV J., RAPPORT M. M., GRAF L. The interaction of glycosides and saccharides with antibody to the corresponding phenylazo glycosides. Biochem J. 1962 Nov;85:383–388. doi: 10.1042/bj0850383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. van Holst G. J., Clarke A. E. Organ-Specific Arabinogalactan-Proteins of Lycopersicon peruvianum (Mill) Demonstrated by Crossed Electrophoresis. Plant Physiol. 1986 Mar;80(3):786–789. doi: 10.1104/pp.80.3.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. van Holst G. J., Klis F. M., de Wildt P. J., Hazenberg C. A., Buijs J., Stegwee D. Arabinogalactan Protein from a Crude Cell Organelle Fraction of Phaseolus vulgaris L. Plant Physiol. 1981 Oct;68(4):910–913. doi: 10.1104/pp.68.4.910. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES