Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1995 Nov;109(3):1047–1057. doi: 10.1104/pp.109.3.1047

Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees.

C H Foyer 1, N Souriau 1, S Perret 1, M Lelandais 1, K J Kunert 1, C Pruvost 1, L Jouanin 1
PMCID: PMC161408  PMID: 8552710

Abstract

A poplar hybrid, Populus tremula x Populus alba, was transformed with the bacterial genes for either glutathione reductase (GR) (gor) or glutathione synthetase (GS) (gshII). When the gor gene was targeted to the chloroplasts, leaf GR activities were up to 1000 times greater than in all other lines. In contrast, targeting to the cytosol resulted in 2 to 10 times the GR activity. GR mRNA, protein, and activity levels suggest that bacterial GR is more stable in the chloroplast. When the gshII gene was expressed in the cytosol, GS activities were up to 100 times greater than in other lines. Overexpression of GR or GS in the cytosol had no effect on glutathione levels, but chloroplastic-GR expression caused a doubling of leaf glutathione and an increase in reduction state. The high-chloroplastic-GR expressors showed increased resistance to photoinhibition. The herbicide methyl viologen inhibited CO2 assimilation in all lines, but the increased leaf levels of glutathione and ascorbate in the high-chloroplastic-GR expressors persisted despite this treatment. These results suggest that overexpression of GR in the chloroplast increases the antioxidant capacity of the leaves and that this improves the capacity to withstand oxidative stress.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bevan M. Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 1984 Nov 26;12(22):8711–8721. doi: 10.1093/nar/12.22.8711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bowler C., Slooten L., Vandenbranden S., De Rycke R., Botterman J., Sybesma C., Van Montagu M., Inzé D. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J. 1991 Jul;10(7):1723–1732. doi: 10.1002/j.1460-2075.1991.tb07696.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Creissen G., Edwards E. A., Enard C., Wellburn A., Mullineaux P. Molecular characterization of glutathione reductase cDNAs from pea (Pisum sativum L.). Plant J. 1992 Jan;2(1):129–131. [PubMed] [Google Scholar]
  5. Foyer C., Lelandais M., Galap C., Kunert K. J. Effects of Elevated Cytosolic Glutathione Reductase Activity on the Cellular Glutathione Pool and Photosynthesis in Leaves under Normal and Stress Conditions. Plant Physiol. 1991 Nov;97(3):863–872. doi: 10.1104/pp.97.3.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Griffith O. W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980 Jul 15;106(1):207–212. doi: 10.1016/0003-2697(80)90139-6. [DOI] [PubMed] [Google Scholar]
  7. Guerineau F., Brooks L., Meadows J., Lucy A., Robinson C., Mullineaux P. Sulfonamide resistance gene for plant transformation. Plant Mol Biol. 1990 Jul;15(1):127–136. doi: 10.1007/BF00017730. [DOI] [PubMed] [Google Scholar]
  8. Gupta A. S., Heinen J. L., Holaday A. S., Burke J. J., Allen R. D. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1629–1633. doi: 10.1073/pnas.90.4.1629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. May M. J., Leaver C. J. Oxidative Stimulation of Glutathione Synthesis in Arabidopsis thaliana Suspension Cultures. Plant Physiol. 1993 Oct;103(2):621–627. doi: 10.1104/pp.103.2.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mittler R., Zilinskas B. A. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought. Plant J. 1994 Mar;5(3):397–405. doi: 10.1111/j.1365-313x.1994.00397.x. [DOI] [PubMed] [Google Scholar]
  13. Mullineaux P., Creissen G., Broadbent P., Reynolds H., Kular B., Wellburn A. Elucidation of the role of glutathione reductase using transgenic plants. Biochem Soc Trans. 1994 Nov;22(4):931–936. doi: 10.1042/bst0220931. [DOI] [PubMed] [Google Scholar]
  14. Pitcher L. H., Brennan E., Hurley A., Dunsmuir P., Tepperman J. M., Zilinskas B. A. Overproduction of petunia chloroplastic copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. Plant Physiol. 1991 Sep;97(1):452–455. doi: 10.1104/pp.97.1.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rennenberg H., Polle A. Protection from oxidative stress in transgenic plants. Biochem Soc Trans. 1994 Nov;22(4):936–940. doi: 10.1042/bst0220936. [DOI] [PubMed] [Google Scholar]
  16. Rüegsegger A., Brunold C. Effect of Cadmium on gamma-Glutamylcysteine Synthesis in Maize Seedlings. Plant Physiol. 1992 Jun;99(2):428–433. doi: 10.1104/pp.99.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schmidt A., Kunert K. J. Lipid peroxidation in higher plants : the role of glutathione reductase. Plant Physiol. 1986 Nov;82(3):700–702. doi: 10.1104/pp.82.3.700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smith I. K. Stimulation of glutathione synthesis in photorespiring plants by catalase inhibitors. Plant Physiol. 1985 Dec;79(4):1044–1047. doi: 10.1104/pp.79.4.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tepperman J. M., Dunsmuir P. Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol Biol. 1990 Apr;14(4):501–511. doi: 10.1007/BF00027496. [DOI] [PubMed] [Google Scholar]
  20. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wise R. R., Naylor A. W. Chilling-enhanced photooxidation : evidence for the role of singlet oxygen and superoxide in the breakdown of pigments and endogenous antioxidants. Plant Physiol. 1987 Feb;83(2):278–282. doi: 10.1104/pp.83.2.278. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES