Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 2003 Jul;185(13):3966–3971. doi: 10.1128/JB.185.13.3966-3971.2003

Genome Analysis of a Novel Shiga Toxin 1 (Stx1)-Converting Phage Which Is Closely Related to Stx2-Converting Phages but Not to Other Stx1-Converting Phages

Toshio Sato 1,2,*, Takeshi Shimizu 1,2, Masahisa Watarai 1,, Midori Kobayashi 1, Shigeyuki Kano 1,2, Takashi Hamabata 1,2, Yoshifumi Takeda 3,, Shinji Yamasaki 1,2,4
PMCID: PMC161576  PMID: 12813092

Abstract

Two Stx-converting phages, designated Stx1φ and Stx2φ-II, were isolated from an Escherichia coli O157:H7 strain, Morioka V526, and their entire nucleotide sequences were determined. The genomes of both phages were similar except for the stx gene-flanking regions. Comparing these phages to other known Stx-converting phages, we concluded that Stx1φ is a novel Stx1-converting phage closely related to Stx2-converting phages so far reported.


Infection with enterohemorrhagic Escherichia coli (EHEC) causes severe illnesses including hemorrhagic colitis, hemolytic-uremic syndrome, and encephalosis (13). Such critical illnesses are due to Shiga toxin (Stx) produced by EHEC. EHEC produces two types of Stx, namely Stx1, which is identical to Shiga toxin produced by Shigella dysenteriae type 1 (17), and Stx2, which has immunological properties that are different from those of Stx1 but biological properties that are similar to those of Stx1 (22). Both of these Stxs are encoded by stx genes in the genome of the lysogenic bacteriophage (Stx phage) of EHEC (12, 16).

The fact that the expression of stx genes is linked to Stx phage induction (1, 11) is clinically quite important because DNA-damaging drugs such as quinolones, which induce an SOS response in bacteria, are supposed to enhance Stx production as well as Stx phage release from EHEC (4, 23). In fact, several studies on the effects of antibiotics on EHEC infection have been published (2, 19, 20). Thus, a need to analyze the nature or structure of Stx-converting phages has led to several studies on genome analysis of some Stx-converting phages (7, 9, 10, 14, 21). We also isolated three Stx-converting phages from EHEC strains collected in Japan, i.e., Stx1φ, Stx2φ-I, and Stx2φ-II (18), and we determined their complete DNA sequences. In this paper, we report the genomic analysis of Stx1φ and Stx2φ-II, both derived from a single EHEC strain, Morioka V526.

Phage isolation and DNA sequence determination.

Isolation of Stx-converting phages from the EHEC Morioka V526 strain, preparation of the restriction map, and subcloning were performed as described previously (18). DNA sequencing was done by using the Dye Terminator kit (Applied Biosystems, Norwalk, Conn.) and 377PRISM autosequencer (Applied Biosystems) with synthetic oligonucleotides as primers. It was found that the genome size of Stx1φ was 59,866 bp, while that of Stx2φ-II was 62,706 bp. As shown in Fig. 1, although these two phages carry different stx genes, their genomic structures were quite homologous. The 2.8-kb size difference was attributed mainly to the BamHI-XhoI fragment-containing stx gene (Fig. 1). Also, insertion sequence IS1203 v (6) was found in this region in Stx2φ-II (Fig. 1).

FIG. 1.

FIG. 1.

Schematic representation of Stx1φ and Stx2φ-II. (A) Comparison of DNAs of Stx2φ-II and Stx1φ. The linear sequences of XhoI fragments are shown. The open bars represent homologous portions, while the different portions of Stx1φ are represented by shaded bars and the corresponding regions in Stx2φ-II are represented by dotted bars. The DNA sizes are shown on the top of the figure in kilobases (kb). Homology percentages are given above and below the second line of the figure. The asterisk indicates 0% homology, which is due to IS1203 v. Vertical lines on the two lower bars indicate XhoI sites (solid lines) and BamHI sites (broken lines). (B) Comparison of ORFs of Stx2φ-II and Stx1φ. The predicted ORFs are illustrated; the boxes above and below the horizontal lines are ORFs with rightward and leftward transcription directions, respectively. Open boxes are ORFs identical to the corresponding ORFs in any Stx2-converting phage(s) described in Table 1. Shaded boxes are ORFs characteristic of Stx1-converting phages, and dotted boxes are ORFs nearly identical to those of any Stx2-converting phage(s).

Comparison to other reported Stx-converting phages.

The genomic structures of Stx1φ and Stx2φ-II were compared to those of other Stx-converting phages so far reported. It was found that they were quite similar to those of other known Stx2-converting phages, except for the stx-flanking regions (Fig. 1 and Table 1), but not to those of other Stx1-converting phages such as VT1-Sakai and H19B (Fig. 2).

TABLE 1.

ORFs of Stx1φ and Stx2φ-II

Stx1φ
% Identity between Stx1φ and Stx2φ-IIa (aa) Stx2φ-II
Gene Orientationb Homologous ORFs ina:
Description % Identity (aa)
933W
VT2-Sakai
VT1-Sakai
ORF Start Stop aae ORF Start Stop aa % Identity (aa) Label % Identity (aa) Label % Identity (aa) Label
B0 −452 1255 568 100 (568) C0 −452 1255 568 >
B1 1255 3399 714 100 (714) C1 1255 3399 714 > 100 (714) L0114 100 (714) H0130
B3 3557 4564 335 100 (335) C3 3557 4564 335 > 100 (335) L0115 100 (335) H0131
B4 4588 5121 177 100 (162) C4 4588 5802 404 > 100 (162) L0116 100 (162) H0132
B5 5118 5801 227 100 (227) C4 4588 5802 404 > 100 (227) L0116 100 (227) H0132
B7 5857 6246 129 100 (129) C6 5858 6247 129 > 100 (129) L0117 100 (129) H0133
B9 6269 6757 162 100 (162) C8 6270 6758 162 > 100 (162) L0118 100 (162) H0134
B10 6633 7304 223 100 (223) C9 6634 7305 223 > 100 (223) L0119 100 (223) H0135
B12 7304 7954 216 100 (216) C11 7305 7955 216 > 100 (216) L0120 100 (216) H0136
B14 7951 9888 645 100 (645) C13 7952 9889 645 > 100 (645) L0121 99 (645) H0137 Collagen alpha 1 (I) chain 40 (422)
B18 9770 10159 129 100 (129) C17 9771 10160 129 > 100 (129) L0122 100 (129) H0138 92 (129) H0003
B19 10206 10487 93 100 (93) C18 10207 10488 93 > 100 (93) L0123 100 (93) H0139
B20 10704 12407 567 100 (567) C19 10705 12408 567 > 100 (567) L0124 100 (567) H0140
B21 12404 13672 422 100 (422) C20 12405 13673 422 > 100 (422) L0125 100 (422) H0141
B22 13738 13965 75 100 (75) C21 13739 13966 75 > 100 (75) L0126 100 (75) H0142
B23 13971 14588 205 100 (205) C22 13972 14589 205 lom > 100 (205) L0127 100 (205) H0143
B24 14679 15413 244 100 (244) C23 14680 15414 244 > 100 (244) L0128 100 (244) H0144 Phage lambda Lom 35 (174)
B25 15843 16244 133 100 (133) C24 15844 16245 133 > 100 (133) L0129 100 (133) H0145
B26 16338 16994 218 100 (218) C25 16339 16995 218 > 100 (218) L0130 100 (218) H0146
B28 16997 17443 148 100 (148) C27 16998 17444 148 > 100 (148) L0131 100 (148) H0147
B29 17453 17704 83 100 (83) C28 17454 17705 83 > 100 (83) L0132 100 (83) H0148
B30 17715 18980 421 100 (421) C29 17716 18981 421 > 100 (421) L0133 100 (421) H0149
B31 19011 27431 2,806 99 (2,565) C30 19012 26742 2,576 > 99 (2,806) L0134 100 (2,806) H0150
B38 27714 27902 62 100 (62) C37 27714 27902 62 > 100 (62) L0135 100 (62) H0151
b32 28326 27982 114 100 (114) c32 28326 27982 114 < 100 (114) L0136 100 (114) H0152
B39 28646 29395 249 100 (249) C38 28646 29395 249 > 98 (72) 100 (249)
b33 28658 28446 70 100 (70) c33 28658 28446 70 gef < 100 (70) L0137 100 (70) H0153 E. coli K-12 Gef 73 (69)
b34 29362 28892 156 100 (156) c34 29362 28892 156 < 100 (156) L0139 92 (130)
B40 29380 29748 122 100 (122) C39 29380 29748 122 > 100 (122) 99 (122)
B41 29735 30019 94 100 (94) C40 29735 30019 94 ehly2 > 85 (84) 100 (94) Bacteriophage C3208 enterohemolysin 2 89 (74)
b35 29946 29287 219 100 (219) c35 29946 29287 219 < 98 (219) L0140 99 (219) H0156 Enterohemolysin-associated protein 88 (77)
b36 30456 30172 94 100 (94) c36 30456 30172 94 < 98 (94) H0158
b37 30674 30453 73 100 (73) c37 30674 30453 73 < 91 (73) L0141 98 (73) H0159
b38 31351 30722 209 100 (209) c38 31351 30722 209 antB < 99 (209) L0142 100 (209) H0160 E. coli AntB 84 (209)
b39 33251 31917 444 100 (444) c39 33251 31917 444 int < 100 (444) L0061 100 (444) H0071 65 (423) H0070 E. coli K-12 putative transposase 55 (385)
b40 33579 33280 99 100 (99) c40 33579 33280 99 ydaQ < 100 (99) L0062 100 (99) H0072 47 (74) H0069 E. coli YdaQ 35 (62)
b41 33961 33650 103 100 (103) c41 33961 33650 103 < 100 (103) L0063 100 (103) H0073
b42 34386 34021 121 100 (121) c42 34386 34021 121 < 100 (121) L0064 100 (121) H0074
b43 34921 34298 207 100 (207) c43 34921 34298 207 < 100 (207) L0065 100 (207) H0075 84 (44) H0060
b44 35212 34925 95 100 (95) c44 35212 34925 95 < 100 (95) L0066 100 (95) H0076
b45 35432 35214 72 100 (72) c45 35432 35214 72 < 100 (72) L0067 100 (72) H0077
b46 35721 35434 95 100 (95) c46 35721 35434 95 < 100 (95) L0068 100 (95) H0078
b47 36118 35651 155 100 (155) c47 36118 35651 155 < 100 (115) 100 (115)
B48 36217 36567 116 100 (116) C47 36217 36567 116 ehly2 > 100 (116) 100 (116) Bacteriophage C3208 enterohemolysin 2 95 (102)
b48 36764 35991 257 100 (257) c48 36764 35991 257 < 100 (257) L0069 100 (257) H0079 79 (146) H0066 Enterohemolysin-associated protein 97 (177)
b50 36982 36761 73 100 (73) c50 36982 36761 73 < 79 (73) L0141 100 (73) H0080 94 (73) H0065
b51 37362 37081 93 100 (93) c51 37362 37081 93 < 100 (93) L0070 100 (93) H0081 100 (93) H0064 Phage lambda orf61 93 (46)
b52 37564 37373 63 100 (63) c52 37564 37373 63 < 98 (63) L0071 100 (63) H0082 98 (63) H0063 Phage lambda orf63 90 (61)
b53 37725 37537 62 100 (62) c53 37725 37537 62 < 93 (62) L0072 100 (62) H0083 93 (62) H0062 Phage lambda orf60 96 (60)
b54 38396 37716 226 100 (226) c54 38396 37716 226 exo < 99 (226) L0073 100 (226) H0084 97 (225) H0061 Phage lambda exonuclease 98 (226)
b55 39178 38393 261 100 (261) c55 39178 38393 261 bet < 100 (261) L0074 100 (261) H0085 99 (261) H0060 Phage lambda Bet 99 (261)
b57 39600 39184 138 100 (138) c57 39600 39184 138 gam < 97 (98) L0075 100 (98) H0086 95 (98) H0059 Phage lambda Gam 97 (138)
b58 39824 39555 89 100 (89) c58 39824 39555 89 kil < 97 (89) L0076 100 (89) H0087 96 (89) H0058 Phage lambda Kil 98 (89)
b59 39831 39667 54 100 (54) c59 39831 39667 54 cIII < 98 (54) L0077 100 (54) H0088 100 (54) H0057 Phage lambda CIII 100 (54)
b60 40272 39904 122 100 (122) c60 40272 39904 122 ea10 < 98 (122) L0078 100 (122) H0089 98 (122) H0056 Phage lambda Ea10 99 (122)
b61 40706 40455 83 100 (83) c61 40706 40455 83 < 100 (83) H0090
b62 41109 40765 114 100 (144) c62 41109 40765 114 N < 41 (127) L0080 100 (90) H0091 47 (90) H0054 Phage HK97 N 42 (127)
b63 42287 41766 173 100 (173) c63 42287 41766 173 < 100 (173) H0093
b64 43484 42789 231 100 (231) c64 43484 42789 231 cI < L0085 99 (217) H0094 H0052 Phage lambda CI 71 (212)
B58 43560 43775 71 100 (71) C57 43560 43775 71 cro > L0086 100 (71) H0095 H0051 Salmonella enterica serovar Typhimurium bacteriophage ST64T Cro 69 (71)
B59 43917 44213 98 100 (98) C58 43917 44213 98 cII > 98 (98) L0087 100 (98) H0096 90 (98) H0050 Phage HK022 CII 96 (98)
B60 44385 45284 299 92 (194) C59 44385 45029 214 O > L0088 100 (299) H0098 H0049 Phage HK022 O 98 (299)
B61 45259 46710 483 100 (483) C60 45258 46709 483 P > L0089 100 (478) H0099 H0048 Phage HK022 P 99 (413)
b66 45272 44913 119 100 (117) c66 45271 44855 138 < 100 (119)
B62 46710 46979 89 100 (89) C61 46709 46978 89 > 100 (89) H0100
B63 47050 47328 92 100 (92) C62 47049 47327 92 > 100 (92) L0091 100 (92) H0101 98 (92) H0045
B64 47461 47676 71 100 (71) C63 47460 47675 71 > 97 (71) orf 6c 100 (71) H0102 98 (71) H0044
B65 47681 47923 80 100 (80) C64 47680 47922 80 > 100 (48) L0092 100 (78) H0103 100 (78) H0043
B66 47781 48326 181 100 (181) C65 47780 48325 181 ninB > 99 (181) L0093 100 (148) H0104 99 (148) H0042 Bacteriophage 21 NinB 43 (148)
B67 48323 48850 175 98 (175) C66 48322 48849 175 dam > 98 (175) L0094 98 (175) H0105 100 (175) H0041 DNA adenine methyltransferase 32 (158)
B68 48847 49023 58 100 (58) C67 48846 49028 60 ninE > 85 (27) orf 11c 100 (58) H0106 100 (58) H0040 Bacteriophage P22 NinE 98 (58)
C68 49303 50037 244 ant > Phage P22 Ant 82 (104)
C69 50106 50834 242 roi > 88 (242)d L0096 100 (242)d H0108 Phage HK022 Roi 82 (241)
B69 48984 49427 147 > 100 (135) H0039
B70 49589 50194 201 96 (201) C70 50834 51439 201 ninG > 96 (201) L0097 96 (201) H0109 100 (201) H0037 Phage lambda Nin G 90 (203)
B71 50221 50385 54 100 (54) C71 51466 51630 54 ninH > 100 (54) L0098 100 (54) H0110 100 (54) H0036 Phage lambda Nin H 78 (50)
B72 50339 50812 157 97 (157) C72 51584 52057 157 Q > 97 (157) L0099 97 (157) H0111 100 (157) H0035 Q
B73 51319 52266 315 stxA1 > 100 (315) H0034 StxA1 subunit 100 (315)
B74 52276 52545 89 stxB1 > 100 (89) H0033 StxB1 subunit 100 (89)
C73 52841 53800 319 stxA2 > 100 (319)d L0103 100 (319)d H0112 StxA2 subunit 100 (319)
C74 53812 54081 89 stxB2 > 100 (89)d L0104 100 (89)d H0113 StxB2 subunit 100 (89)
b70 52929 52606 107 < 100 (107) S. dysenteriae hypothetical protein 59 (61)
B75 53056 55002 648 89 (570) C75 54568 56472 634 yjhS > 91 (648) L0105 98 (415) H0115 100 (648) H0032 S. dysenteriae YjhS 67 (656)
S. somnei bacteriophage 7888 hypothetical protein 91 (648)
c73 57169 56279 296 < 100 (296)d H0116 100 (296)d H0021 IS1203 v ORFb 100 (296)
c74 57492 57166 108 < 100 (108)d H0117 99 (108)d H0020 IS1203 v ORFa 100 (108)
B78 55140 55319 59 100 (59) C80 57954 58133 59 > 100 (59) orf 25c 100 (59) H0119 100 (59) H0031
B79 55186 55605 139 82 (136) C81 58000 58446 148 > 79 (148) L0106 81 (136) 100 (81) H0030 S. sonnei bacteriophage 7888 hypothetical protein 79 (148)
S. dysenteriae hypothetical protein 91 (81)
B80 55608 55898 96 100 (71) C82 58523 58738 71 S > 100 (71) L0107 100 (71) H0121 100 (71) H0029 S. sonnei bacteriophage 7888 S 100 (71)
S. dysenteriae S 95 (71)
B81 55903 56436 177 100 (177) C83 58743 59276 177 R > 100 (177) L0108 100 (177) H0122 100 (177) H0028 S. sonnei bacteriophage 7888 R 96 (177)
B82 56707 57276 189 100 (189) C84 59547 60116 189 ant > 100 (189) L0109 100 (189) H0123 100 (189) H0027 S. sonnei bacteriophage Ant 94 (189)
B83 57430 57894 154 100 (154) C85 60270 60734 154 Rz > 100 (154) L0110 100 (154) H0124 96 (153) H0026 S. sonnei bacteriophage 7888 Rz 84 (133)
B84 57650 57835 61 100 (61) C86 60490 60675 61 > 100 (61) L0110 100 (61) H0125 98 (61) Phage lambda Rz1 72 (61)
b79 58219 57926 97 100 (97) c80 61059 60766 97 bor < 100 (97) L0111 100 (97) H0126 Phage lambda Bor 96 (97)
B85 58327 58572 81 100 (81) C87 61167 61412 81 > 100 (81) 100 (81)
B86 58628 59434 268 100 (268) C88 61468 62274 268 > 100 (268) L0112 100 (268) H0127
B87 59415 1255 568 100 (568) C89 62255 1255 568 > 100 (568) L0113 100 (389) H0128
100 (138) H0129
a

Homologous ORF(s) of Stx2φ-II, 933W (14), VT2-Sakai (7) and VT1-Sakai (21) compared with each ORF of Stx1φ are shown as % identity in amino acid residues indicated. Identities higher than 95% are shown in bold, and ORFs which are identical to the corresponding ORF in Stx1φ are underlined.

b

>, rightward transcription; <, leftward transcription in Fig. 1.

c

This ORF was reported in reference 3.

d

Comparison with Stx2φ-II.

e

aa, amino acids.

FIG. 2.

FIG. 2.

Comparison of Stx1φ with other related Stx1-converting phages. The open bars represent portions homologous to Stx1φ, while the different portions of each Stx1-converting phage are cross-hatched. (A) Comparison between Stx1φ and VT1-Sakai phages; (B) comparison between Stx1φ and H19B phages. The DNA sequence of VT1-Sakai phage was modified from that reported by Yokoyama et al. (21) for convenience. Note that most regions of Stx1φ were not homologous to Stx1-converting phages, except for the stx1-flanking region.

ORF analysis.

Open reading frames (ORFs) that showed significant homologies to the genes registered in DDBJ or that consisted of more than 80 amino acid residues were picked up. This definition enabled us to identify 167 putative ORFs in Stx1φ and 170 putative ORFs in Stx2φ-II (for detailed ORF information, please refer to DDBJ). The ORFs that show homology to any genes in other Stx-converting phages or bacterium-associated genes were picked up and are listed in Table 1. ORFs of Stx1φ and Stx2φ-II were also almost completely identical, reflecting the high DNA sequence homology between these two phages. The exception was the stx-flanking regions including four ORFs, B69, B73, B74, and b70 in Stx1, which are identical to or almost the same as the corresponding ORFs of VT1-Sakai (Table 1). This region might be characteristic of Stx1-converting pages, since H19B (10) also has a homology in the corresponding region at the DNA level (data not shown). ORFs B4, B5, and B30 of Stx1φ are not identical to the corresponding ORFs of Stx2φ-II due to frameshift mutations (data not shown). From these data, we conclude that Stx1φ is closely related to other Stx2-converting phages even at the ORF level.

It is noteworthy that there are several ORFs homologous to those of Shigella sonnei phage 7888 (15) and S. dysenteriae (8) in the stx-flanking regions of Stx1φ and Stx2φ-II (Table 1). Recently, an Stx-converting phage was isolated from Stx1-producing S. sonnei (L. Beutin, E. Strauch, and I. Fischer, Letter, Lancet 353:1498, 1999). Treatment with mitomycin C increases Stx production and induces Stx phage from some EHEC (5) and S. sonnei (Beutin et al., letter) bacteria. It has been a focus of discussion whether Stx-converting phages in EHEC are derived from Shigella species. Our data rather support that Stx-converting phages might be derived from, or at least related to, Shigella species.

Nucleotide sequence accession numbers.

The entire nucleotide sequences of Stx1φ and Stx2φ-II were submitted to DDBJ under accession numbers AP005153 and AP005154, respectively.

Acknowledgments

We thank G. Balakrish Nair for critical reading of the manuscript.

This work was supported by the Organization for Pharmaceutical Safety and Research.

This work formed a part of the Ph.D. thesis of T. Sato.

REFERENCES

  • 1.Fuchs, S., I. Muhldorfer, A. Donohue-Rolfe, M. Kerenyi, L. Emody, R. Alexiev, P. Nenkov, and J. Hacher. 1999. Influence of RecA on in vivo virulence and Shiga toxin 2 production in Escherichia coli pathogens. Microb. Pathog. 27:13-23. [DOI] [PubMed] [Google Scholar]
  • 2.Grif, K., M. P. Dierich, H. Karch, and F. Allerberger. 1998. Strain-specific differences in the amount of Shiga toxin released from enterohemorrhagic Escherichia coli O157 following exposure to subinhibitory concentrations of antimicrobial agents. Eur. J. Clin. Microbiol. Infect. Dis. 17:761-766. [DOI] [PubMed] [Google Scholar]
  • 3.Karch, H., H. Schmidt, C. Janetzki-Mittmann, J. Scheef, and M. Kroeger. 1999. Shiga toxins even when different are encoded at identical positions in the genomes of related temperate bacteriophages. Mol. Gen. Genet. 262:600-607. [DOI] [PubMed] [Google Scholar]
  • 4.Kimmit, P. T., C. R. Harwood, and M. R. Barer. 2000. Toxin gene expression by Shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response. Emerg. Infect. Dis. 6:458-465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Kohler, B., H. Karch, and H. Schmidt. 2000. Antibacterials that are used as growth promoters in animal husbandry can affect the release of Shiga-toxin-2-converting bacteriophages and Shiga toxin 2 from Escherichia coli strains. Microbiology 146:1085-1090. [DOI] [PubMed] [Google Scholar]
  • 6.Kusumoto, M., Y. Nishiya, Y. Kawamura, and K. Shinagawa. 1999. Identification of an insertion sequence, IS1203 variant, in a Shiga toxin 2 gene of Escherichia coli O157:H7. J. Biosci. Bioeng. 87:93-96. [DOI] [PubMed] [Google Scholar]
  • 7.Makino, K., K. Yokoyama, Y. Kubota, C. H. Yutsudo, S. Kitamura, K. Kurokawa, K. Ishii, M. Hattori, I. Tatsuno, H. Abe, T. Iida, K. Yamamoto, M. Onishi, T. Hayashi, T. Yasunaga, T. Honda, C. Sasakawa, and H. Shinagawa. 1999. Complete nucleotide sequence of the prophage VT2-Sakai carrying the verotoxin 2 genes of the enterohemorrhagic Escherichia coli O157:H7 derived from the Sakai outbreak. Genes Genet. Syst. 74:227-239. [DOI] [PubMed] [Google Scholar]
  • 8.McDonough, M. A., and J. R. Butterton. 1999. Spontaneous tandem amplification and deletion of the Shiga toxin operon in Shigella dysenteriae 1. Mol. Microbiol. 34:1058-1069. [DOI] [PubMed] [Google Scholar]
  • 9.Miyamoto, H., W. Nakai, N. Yajima, A. Fujibayashi, T. Higuchi, K. Sato, and A. Matsushiro. 1999. Sequence analysis of Stx2-converting phage VT2-Sa shows a great divergence in early regulation and replication regions. DNA Res. 6:235-240. [DOI] [PubMed] [Google Scholar]
  • 10.Neely, M. N., and D. I. Friedman. 1998. Arrangement and functional identification of genes in the regulatory region of lambdoid phage H-19B, a carrier of a Shiga-like toxin. Gene 223:105-113. [DOI] [PubMed] [Google Scholar]
  • 11.Neely, M. N., and D. I. Friedman. 1998. Functional and genetic analysis of regulatory regions of coliphage H-19B: location of Shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Mol. Microbiol. 28:1255-1267. [DOI] [PubMed] [Google Scholar]
  • 12.O'Brien, A. D., J. W. Newland, S. F. Miller, R. K. Holmes, H. W. Smith, and S. B. Formal. 1984. Shiga-like toxin-converting phages form Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. Science 226:694-696. [DOI] [PubMed] [Google Scholar]
  • 13.Paton, J. C., and A. W. Paton. 1998. Pathogenesis and diagnosis of Shiga toxin-producing Escherichia coli infections. Clin. Microbiol. Rev. 11:450-479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Plunkett, G. I., D. J. Rose, T. J. Durfee, and F. R. Blattner. 1999. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J. Bacteriol. 181:1767-1778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Strauch, E., R. Lurz, and L. Beutin. 2001. Characterization of a Shiga toxin-encoding temperate bacteriophage of Shigella sonnei. Infect. Immun. 69:7588-7595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Strockbine, N. A., L. R. M. Marques, J. W. Newland, H. W. Smith, R. K. Holmes, and A. D. O'Brien. 1986. Two toxin-converting phages from Escherichia coli O157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infect. Immun. 53:135-140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Takao, T., T. Tanabe, Y.-M. Hong, Y. Shimonishi, H. Kurazono, T. Yutsudo, C. Sasakawa, M. Yoshikawa, and Y. Takeda. 1988. Identity of molecular structure of Shiga-like toxin I (VT1) from Escherichia coli O157:H7 with that of Shiga toxin. Microb. Pathog. 5:357-369. [DOI] [PubMed] [Google Scholar]
  • 18.Watarai, M., T. Sato, M. Kobayashi, T. Shimizu, S. Yamasaki, T. Tobe, C. Sasakawa, and Y. Takeda. 1998. Identification and characterization of a newly isolated Shiga toxin 2-converting phage from Shiga toxin-producing Escherichia coli. Infect. Immun. 66:4100-4107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Wong, C. C., S. Jelacic, R. L. Harbeeb, and S. L. Watkins. 2000. The risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infections. N. Engl. J. Med. 342:1930-1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Yoh, M., E. K. Frimpong, and T. Honda. 1997. Effect of antimicrobial agents, especially fosfomycin, on the production and release of vero toxin by enterohaemorrhagic Escherichia coli O157:H7. FEMS Immunol. Med. Microbiol. 19:57-64. [DOI] [PubMed] [Google Scholar]
  • 21.Yokoyama, K., K. Makino, Y. Kubota, M. Watanabe, S. Kimura, C. H. Yutsudo, K. Kurokawa, K. Ishii, M. Hattori, I. Tatsuno, H. Abe, M. Yoh, T. Iida, M. Ohnishi, T. Hayashi, T. Yasunaga, T. Honda, C. Sasakawa, and H. Shinagawa. 2000. Complete nucleotide sequence of the prophage VT1-Sakai carrying the Shiga toxin 1 genes of the enterohemorrhagic Escherichia coli O157:H7 strain derived from the Sakai outbreak. Gene 258:127-139. [DOI] [PubMed] [Google Scholar]
  • 22.Yutsudo, T., N. Nakabayashi, T. Hirayama, and Y. Takeda. 1987. Purification and some properties of a vero toxin from Escherichia coli O157:H7 that is immunologically unrelated to Shiga toxin. Microb. Pathog. 3:21-30. [DOI] [PubMed] [Google Scholar]
  • 23.Zhang, X., A. D. McDaniel, L. E. Wolf, G. T. Keusch, M. K. Waldor, and D. K. A. Acheson. 2000. Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. J. Infect. Dis. 181:664-670. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES