Abstract
A study of the optical properties of the largely periodic microstructure occurring on the wings of the iridescent tropical butterfly Morpho rhetenor and responsible for its structural colouration is reported. An extensive measurement of the back-scattering of visible light from butterfly scales was performed for various angles of incidence. Efficient low-pass filter behaviour was observed for all angles of incidence and polarizations, with near-complete transmission at wavelengths above the threshold of 550 nm. The angular spread of the back-scattered light was found to be organized in lobes with total extinction of the specular reflection for all conditions of incidence. Retro-reflector behaviour was also observed for angles of incidence of 30 degrees and above. Additionally, the role of periodic geometrical features found in the microstructure for the generation of its spectral response was analysed theoretically. Using finite-difference time-domain and near-field to far-field transformation techniques, the back-scattering of visible light by models was computed numerically and the relevance of geometrical features for the production of structural colour and diffraction was demonstrated.
Full Text
The Full Text of this article is available as a PDF (2.6 MB).