Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Jan;39(1):34–39. doi: 10.1128/aac.39.1.34

Macromolecular mechanisms of sputum inhibition of tobramycin activity.

B E Hunt 1, A Weber 1, A Berger 1, B Ramsey 1, A L Smith 1
PMCID: PMC162480  PMID: 7535039

Abstract

Tobramycin, an aminoglycoside antibiotic, is used in the treatment of Pseudomonas aeruginosa infections in cystic fibrosis patients. Tobramycin bioactivity, however, is antagonized by sputum. Glycoproteins (mucins) and high-molecular-weight DNA make up 2 to 3% (P. L. Masson and J. F. Heremans, p. 412-475, In M. J. Dulfano, ed., Sputum: Fundamentals and Clinical Pathology, 1973) and 3 to 10% (W. S. Chernick and G. J. Barbero, Pediatrics 24:739-745, 1959, and R. Picot, I. Das, and L. Reid, Thorax 33:235-242, 1978) of the dry weight of sputum, respectively. tobramycin binds to both mucins and DNA obtained from sputum (R. Ramphal, M. Lhermitte, M. Filliat, and P. Roussel, J. Antimicrob. Chemother. 22:483-490, 1988). In vitro, recombinant human DNase (rhDNase) hydrolyzes high-molecular-weight DNA of > 50 kb within sputum to fragments of 2 to 4 kb. Studying dialyzable tobramycin, we examined drug binding to whole sputum and to "mock sputum," which consisted of porcine gastric mucin and calf thymus DNA. We also studied the effects of rhDNase treatments of sputum, mock sputum, and calf thymus DNA on tobramycin binding. We found that treatments of sputum, mock sputum, and calf thymus DNA with rhDNase did not significantly increase the tobramycin bioactivity within the dialysates; surprisingly, sputum binding of tobramycin was increased by rhDNase. We conclude that rhDNase does not increase the bioactivity of tobramycin in sputum.

Full Text

The Full Text of this article is available as a PDF (295.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barton A. D., Ryder K., Lourenço R. V., Dralle W., Weiss S. G. Inflammatory reaction and airway damage in cystic fibrosis. J Lab Clin Med. 1976 Sep;88(3):423–426. [PubMed] [Google Scholar]
  2. Beggs W. H., Andrews F. A. Role of ionic strength in salt antagonism of aminoglycoside action on Escherichia coli and Pseudomonas aeruginosa. J Infect Dis. 1976 Nov;134(5):500–504. doi: 10.1093/infdis/134.5.500. [DOI] [PubMed] [Google Scholar]
  3. Bodem C. R., Lampton L. M., Miller D. P., Tarka E. F., Everett E. D. Endobronchial pH. Relevance of aminoglycoside activity in gram-negative bacillary pneumonia. Am Rev Respir Dis. 1983 Jan;127(1):39–41. doi: 10.1164/arrd.1983.127.1.39. [DOI] [PubMed] [Google Scholar]
  4. Bryant R. E., Hammond D. Interaction of purulent material with antibiotics used to treat Pseudomonas infections. Antimicrob Agents Chemother. 1974 Dec;6(6):702–707. doi: 10.1128/aac.6.6.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CHERNICK W. S., BARBERO G. J. Composition of tracheobronchial secretions in cystic fibrosis of the pancreas and bronchiectasis. Pediatrics. 1959 Nov;24:739–745. [PubMed] [Google Scholar]
  6. DAVIS B. D., MINGIOLI E. S. Mutants of Escherichia coli requiring methionine or vitamin B12. J Bacteriol. 1950 Jul;60(1):17–28. doi: 10.1128/jb.60.1.17-28.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davis S. D., Iannetta A. Antagonistic effect of calcium in serum on the activity of tobramycin against Pseudomonas. Antimicrob Agents Chemother. 1972 Jun;1(6):466–469. doi: 10.1128/aac.1.6.466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davis S. D., Iannetta A. Relative antagonism in vitro of calcium in serum to the bactericidal activities of gentamicin and tobramycin on Pseudomonas aeruginosa. Chemotherapy. 1973 Oct;19(4):243–253. doi: 10.1159/000221461. [DOI] [PubMed] [Google Scholar]
  9. Dienstag J., Neu H. C. In vitro studies of tobramycin, an aminoglycoside antibiotic. Antimicrob Agents Chemother. 1972 Jan;1(1):41–45. doi: 10.1128/aac.1.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KISSANE J. M., ROBINS E. The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system. J Biol Chem. 1958 Jul;233(1):184–188. [PubMed] [Google Scholar]
  11. Kenny M. A., Pollock H. M., Minshew B. H., Casillas E., Schoenknecht F. D. Cation components of Mueller-Hinton agar affecting testing of Pseudomonas aeruginosa susceptibility to gentamicin. Antimicrob Agents Chemother. 1980 Jan;17(1):55–62. doi: 10.1128/aac.17.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Levy J., Smith A. L., Kenny M. A., Ramsey B., Schoenknecht F. D. Bioactivity of gentamicin in purulent sputum from patients with cystic fibrosis or bronchiectasis: comparison with activity in serum. J Infect Dis. 1983 Dec;148(6):1069–1076. doi: 10.1093/infdis/148.6.1069. [DOI] [PubMed] [Google Scholar]
  13. Mendelman P. M., Smith A. L., Levy J., Weber A., Ramsey B., Davis R. L. Aminoglycoside penetration, inactivation, and efficacy in cystic fibrosis sputum. Am Rev Respir Dis. 1985 Oct;132(4):761–765. doi: 10.1164/arrd.1985.132.4.761. [DOI] [PubMed] [Google Scholar]
  14. Picot R., Das I., Reid L. Pus, deoxyribonucleic acid, and sputum viscosity. Thorax. 1978 Apr;33(2):235–242. doi: 10.1136/thx.33.2.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Potter J. L., Matthews L. W., Spector S., Lemm J. Complex formation between basic antibiotics and deoxyribonucleic acid in human pulmonary secretions. Pediatrics. 1965 Nov;36(5):714–720. [PubMed] [Google Scholar]
  16. Ramphal R., Lhermitte M., Filliat M., Roussel P. The binding of anti-pseudomonal antibiotics to macromolecules from cystic fibrosis sputum. J Antimicrob Chemother. 1988 Oct;22(4):483–490. doi: 10.1093/jac/22.4.483. [DOI] [PubMed] [Google Scholar]
  17. Reller L. B., Schoenknecht F. D., Kenny M. A., Sherris J. C. Antibiotic susceptibility testing of Pseudomonas aeruginosa: selection of a control strain and criteria for magnesium and calcium content in media. J Infect Dis. 1974 Nov;130(5):454–463. doi: 10.1093/infdis/130.5.454. [DOI] [PubMed] [Google Scholar]
  18. Saggers B. A., Lawson D. The differential attachment of antibiotics to glycoprotein and blood lymphocytes. J Clin Pathol. 1970 Apr;23(3):266–268. doi: 10.1136/jcp.23.3.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shak S., Capon D. J., Hellmiss R., Marsters S. A., Baker C. L. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9188–9192. doi: 10.1073/pnas.87.23.9188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vaudaux P., Waldvogel F. A. Gentamicin inactivation in purulent exudates: role of cell lysis. J Infect Dis. 1980 Oct;142(4):586–593. doi: 10.1093/infdis/142.4.586. [DOI] [PubMed] [Google Scholar]
  21. Washington J. A., 2nd, Snyder R. J., Kohner P. C., Wiltse C. G., Ilstrup D. M., McCall J. T. Effect of cation content of agar on the activity of gentamicin, tobramycin, and amikacin against Pseudomonas aeruginosa. J Infect Dis. 1978 Feb;137(2):103–111. doi: 10.1093/infdis/137.2.103. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES