Abstract
Twenty-eight 2,4-diaminopteridines with alkyl and aralkyl groups at the 6- and 7-positions, five 1,3-diamino-7,8,9,10-tetrahydropyrimido [4,5-c]isoquinolines with an alkyl, alkylthio, or aryl group at the 6-position, and nine 4,6-diamino-1,2-dihydro-s-triazines with one or two alkyl groups at the 2-position and a substituted phenyl or naphthyl group at the 1-position were evaluated as inhibitors of dihydrofolate reductase enzymes from Pneumocystis carinii, Toxoplasma gondii, and rat liver. Halogen substitution at the 5- or 6-position of 2,4-diaminoquinazoline favored selective binding to the P. carinii enzyme but not the T. gondii enzyme. For example, the 50% inhibitory concentrations of 2,4-diamino-6-chloroquinazoline as an inhibitor of P. carinii, T. gondii, and rat liver dihydrofolate reductase were 3.6, 14 and 29 microM, respectively, corresponding to 12-fold selectivity for the P. carinii enzyme but only marginal selectivity for the T. gondii enzyme. Greater than fivefold selectivity for P. carinii but not T. gondii dihydrofolate reductase was also observed for the 2,4-diaminoquinazolines with 5-methyl, 5-fluoro, 5- and 6-bromo, 6-chloro, and 5-chloro-6-bromo substitution. In contrast, alkyl and aralkyl substitution at the 6- and 7-positions of 2,4-diaminopteridines was found to be a favorable feature for selective inhibition of the T. gondii enzyme and, in two cases, for both enzymes. Nine of the fifty-one compounds tested against P. carinii dihydrofolate reductase and four of the thirty compounds tested against T. gondii dihydrofolate reductase displayed fivefold or greater selectivity for the microbial enzyme versus the rat liver enzyme. The most selective against both enzymes was 2,4-diamino-6,7-bis(cyclohexylmethyl) pteridine, with a selectivity ratio 2 orders of magnitude greater than the value reported for trimetrexate and piritrexim. Since substitution at the 7-position is generally considered to be detrimental to the binding of 2,4-diaminop-teridines and related compounds to mammalian dihydrofolate reductase, the selectivity observed in this study with the 6,7-bis(cyclohexylmethyl) analog may represent a useful approach to enhancing selective inhibition of the enzyme from nonmammalian species.
Full Text
The Full Text of this article is available as a PDF (225.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allegra C. J., Kovacs J. A., Drake J. C., Swan J. C., Chabner B. A., Masur H. Potent in vitro and in vivo antitoxoplasma activity of the lipid-soluble antifolate trimetrexate. J Clin Invest. 1987 Feb;79(2):478–482. doi: 10.1172/JCI112837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Araujo F. G., Shepard R. M., Remington J. S. In vivo activity of the macrolide antibiotics azithromycin, roxithromycin and spiramycin against Toxoplasma gondii. Eur J Clin Microbiol Infect Dis. 1991 Jun;10(6):519–524. doi: 10.1007/BF01963942. [DOI] [PubMed] [Google Scholar]
- Atzori C., Bruno A., Chichino G., Bombardelli E., Scaglia M., Ghione M. Activity of bilobalide, a sesquiterpene from Ginkgo biloba, on Pneumocystis carinii. Antimicrob Agents Chemother. 1993 Jul;37(7):1492–1496. doi: 10.1128/aac.37.7.1492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bartlett M. S., Smith J. W. Pneumocystis carinii, an opportunist in immunocompromised patients. Clin Microbiol Rev. 1991 Apr;4(2):137–149. doi: 10.1128/cmr.4.2.137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berman E. M., Werbel L. M. The renewed potential for folate antagonists in contemporary cancer chemotherapy. J Med Chem. 1991 Feb;34(2):479–485. doi: 10.1021/jm00106a001. [DOI] [PubMed] [Google Scholar]
- Broughton M. C., Queener S. F. Pneumocystis carinii dihydrofolate reductase used to screen potential antipneumocystis drugs. Antimicrob Agents Chemother. 1991 Jul;35(7):1348–1355. doi: 10.1128/aac.35.7.1348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burchall J. J., Hitchings G. H. Inhibitor binding analysis of dihydrofolate reductases from various species. Mol Pharmacol. 1965 Sep;1(2):126–136. [PubMed] [Google Scholar]
- Chio L. C., Queener S. F. Identification of highly potent and selective inhibitors of Toxoplasma gondii dihydrofolate reductase. Antimicrob Agents Chemother. 1993 Sep;37(9):1914–1923. doi: 10.1128/aac.37.9.1914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davey R. T., Jr, Masur H. Recent advances in the diagnosis, treatment, and prevention of Pneumocystis carinii pneumonia. Antimicrob Agents Chemother. 1990 Apr;34(4):499–504. doi: 10.1128/aac.34.4.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fischer P. A., Enzensberger W. Neurological complications in AIDS. J Neurol. 1987 Jun;234(5):269–279. doi: 10.1007/BF00314279. [DOI] [PubMed] [Google Scholar]
- Fischl M. A., Dickinson G. M., La Voie L. Safety and efficacy of sulfamethoxazole and trimethoprim chemoprophylaxis for Pneumocystis carinii pneumonia in AIDS. JAMA. 1988 Feb 26;259(8):1185–1189. doi: 10.1001/jama.259.8.1185. [DOI] [PubMed] [Google Scholar]
- Gangjee A., Shi J., Queener S. F., Barrows L. R., Kisliuk R. L. Synthesis of 5-methyl-5-deaza nonclassical antifolates as inhibitors of dihydrofolate reductases and as potential antipneumocystis, antitoxoplasma, and antitumor agents. J Med Chem. 1993 Oct 29;36(22):3437–3443. doi: 10.1021/jm00074a026. [DOI] [PubMed] [Google Scholar]
- Hughes W. T., Gray V. L., Gutteridge W. E., Latter V. S., Pudney M. Efficacy of a hydroxynaphthoquinone, 566C80, in experimental Pneumocystis carinii pneumonitis. Antimicrob Agents Chemother. 1990 Feb;34(2):225–228. doi: 10.1128/aac.34.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hughes W., Leoung G., Kramer F., Bozzette S. A., Safrin S., Frame P., Clumeck N., Masur H., Lancaster D., Chan C. Comparison of atovaquone (566C80) with trimethoprim-sulfamethoxazole to treat Pneumocystis carinii pneumonia in patients with AIDS. N Engl J Med. 1993 May 27;328(21):1521–1527. doi: 10.1056/NEJM199305273282103. [DOI] [PubMed] [Google Scholar]
- Katlama C. Evaluation of the efficacy and safety of clindamycin plus pyrimethamine for induction and maintenance therapy of toxoplasmic encephalitis in AIDS. Eur J Clin Microbiol Infect Dis. 1991 Mar;10(3):189–191. doi: 10.1007/BF01964459. [DOI] [PubMed] [Google Scholar]
- Ke O. Y., Krug E. C., Marr J. J., Berens R. L. Inhibition of growth of Toxoplasma gondii by qinghaosu and derivatives. Antimicrob Agents Chemother. 1990 Oct;34(10):1961–1965. doi: 10.1128/aac.34.10.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kovacs J. A., Allegra C. J., Beaver J., Boarman D., Lewis M., Parrillo J. E., Chabner B., Masur H. Characterization of de novo folate synthesis in Pneumocystis carinii and Toxoplasma gondii: potential for screening therapeutic agents. J Infect Dis. 1989 Aug;160(2):312–320. doi: 10.1093/infdis/160.2.312. [DOI] [PubMed] [Google Scholar]
- Kovacs J. A., Allegra C. J., Swan J. C., Drake J. C., Parrillo J. E., Chabner B. A., Masur H. Potent antipneumocystis and antitoxoplasma activities of piritrexim, a lipid-soluble antifolate. Antimicrob Agents Chemother. 1988 Apr;32(4):430–433. doi: 10.1128/aac.32.4.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kovacs J. A., Hiemenz J. W., Macher A. M., Stover D., Murray H. W., Shelhamer J., Lane H. C., Urmacher C., Honig C., Longo D. L. Pneumocystis carinii pneumonia: a comparison between patients with the acquired immunodeficiency syndrome and patients with other immunodeficiencies. Ann Intern Med. 1984 May;100(5):663–671. doi: 10.7326/0003-4819-100-5-663. [DOI] [PubMed] [Google Scholar]
- Leoung G. S., Mills J., Hopewell P. C., Hughes W., Wofsy C. Dapsone-trimethoprim for Pneumocystis carinii pneumonia in the acquired immunodeficiency syndrome. Ann Intern Med. 1986 Jul;105(1):45–48. doi: 10.7326/0003-4819-105-1-45. [DOI] [PubMed] [Google Scholar]
- Leport C., Raffi F., Matheron S., Katlama C., Regnier B., Saimot A. G., Marche C., Vedrenne C., Vilde J. L. Treatment of central nervous system toxoplasmosis with pyrimethamine/sulfadiazine combination in 35 patients with the acquired immunodeficiency syndrome. Efficacy of long-term continuous therapy. Am J Med. 1988 Jan;84(1):94–100. doi: 10.1016/0002-9343(88)90014-9. [DOI] [PubMed] [Google Scholar]
- Masur H., Polis M. A., Tuazon C. U., Ogata-Arakaki D., Kovacs J. A., Katz D., Hilt D., Simmons T., Feuerstein I., Lundgren B. Salvage trial of trimetrexate-leucovorin for the treatment of cerebral toxoplasmosis in patients with AIDS. J Infect Dis. 1993 Jun;167(6):1422–1426. doi: 10.1093/infdis/167.6.1422. [DOI] [PubMed] [Google Scholar]
- Masur H. Problems in the management of opportunistic infections in patients infected with human immunodeficiency virus. J Infect Dis. 1990 May;161(5):858–864. doi: 10.1093/infdis/161.5.858. [DOI] [PubMed] [Google Scholar]
- Merali S., Meshnick S. R. Susceptibility of Pneumocystis carinii to artemisinin in vitro. Antimicrob Agents Chemother. 1991 Jun;35(6):1225–1227. doi: 10.1128/aac.35.6.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montgomery A. B., Debs R. J., Luce J. M., Corkery K. J., Turner J., Brunette E. N., Lin E. T., Hopewell P. C. Aerosolised pentamidine as sole therapy for Pneumocystis carinii pneumonia in patients with acquired immunodeficiency syndrome. Lancet. 1987 Aug 29;2(8557):480–483. doi: 10.1016/s0140-6736(87)91794-6. [DOI] [PubMed] [Google Scholar]
- Piper J. R., Johnson C. A., Hosmer C. A., Carter R. L., Pfefferkorn E. R., Borotz S. E., Queener S. F. Lipophilic antifolates as candidates against opportunistic infections. Adv Exp Med Biol. 1993;338:429–433. doi: 10.1007/978-1-4615-2960-6_86. [DOI] [PubMed] [Google Scholar]
- Queener S. F., Bartlett M. S., Jay M. A., Durkin M. M., Smith J. W. Activity of lipid-soluble inhibitors of dihydrofolate reductase against Pneumocystis carinii in culture and in a rat model of infection. Antimicrob Agents Chemother. 1987 Sep;31(9):1323–1327. doi: 10.1128/aac.31.9.1323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Queener S. F., Fujioka H., Nishiyama Y., Furukawa H., Bartlett M. S., Smith J. W. In vitro activities of acridone alkaloids against Pneumocystis carinii. Antimicrob Agents Chemother. 1991 Feb;35(2):377–379. doi: 10.1128/aac.35.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosowsky A., Chaykovsky M., Lin M., Modest E. J. Pteridines. 2. New 6,7-disubstituted pteridines as potential antimalarial and antitumor agents. J Med Chem. 1973 Aug;16(8):869–875. doi: 10.1021/jm00266a001. [DOI] [PubMed] [Google Scholar]
- Rosowsky A., Chen K. K., Amand R. S., Modest E. J. Chemical and biological studies on 1,2-dihydro-s-triazines. 18. Synthesis of 1-(5,6- and 5,7-dichloro-2-naphthyl) derivatives and related compounds as candidate antimalarial and antitumor agents. J Pharm Sci. 1973 Mar;62(3):477–479. doi: 10.1002/jps.2600620326. [DOI] [PubMed] [Google Scholar]
- Rosowsky A., Freisheim J. H., Hynes J. B., Queener S. F., Bartlett M., Smith J. W., Lazarus H., Modest E. J. Tricyclic 2,4-diaminopyrimidines with broad antifolate activity and the ability to inhibit Pneumocystis carinii growth in cultured human lung fibroblasts in the presence of leucovorin. Biochem Pharmacol. 1989 Aug 15;38(16):2677–2684. doi: 10.1016/0006-2952(89)90554-6. [DOI] [PubMed] [Google Scholar]
- Rosowsky A., Marini J. L., Nadel M. E., Modest E. J. Quinazolines. VI. Synthesis of 2,4-diaminoquinazolines from anthranilonitriles. J Med Chem. 1970 Sep;13(5):882–886. doi: 10.1021/jm00299a021. [DOI] [PubMed] [Google Scholar]
- Rosowsky A., Mota C. E., Wright J. E., Freisheim J. H., Heusner J. J., McCormack J. J., Queener S. F. 2,4-Diaminothieno[2,3-d]pyrimidine analogues of trimetrexate and piritrexim as potential inhibitors of Pneumocystis carinii and Toxoplasma gondii dihydrofolate reductase. J Med Chem. 1993 Oct 15;36(21):3103–3112. doi: 10.1021/jm00073a009. [DOI] [PubMed] [Google Scholar]
- Rosowsky A., Papathanasopoulos N. Pyrimido(4,5-c)isoquinolines. 2. Synthesis and biological evaluation of some 6-alkyl-,6-aralkyl-, and 6-aryl-1,3-diamino-7,8,9,10-tetrahydropyrimido(4,5-c)isoquinolines as potential folate antagnoists 1. J Med Chem. 1974 Dec;17(12):1272–1276. doi: 10.1021/jm00258a008. [DOI] [PubMed] [Google Scholar]
- Ruf B., Pohle H. D. Clindamycin/primaquine for Pneumocystis carinii pneumonia. Lancet. 1989 Sep 9;2(8663):626–627. doi: 10.1016/s0140-6736(89)90755-1. [DOI] [PubMed] [Google Scholar]
- Ruf B., Schürmann D., Bergmann F., Schüler-Maué W., Grünewald T., Gottschalk H. J., Witt H., Pohle H. D. Efficacy of pyrimethamine/sulfadoxine in the prevention of toxoplasmic encephalitis relapses and Pneumocystis carinii pneumonia in HIV-infected patients. Eur J Clin Microbiol Infect Dis. 1993 May;12(5):325–329. doi: 10.1007/BF01964427. [DOI] [PubMed] [Google Scholar]
- Schmatz D. M., Abruzzo G., Powles M. A., McFadden D. C., Balkovec J. M., Black R. M., Nollstadt K., Bartizal K. Pneumocandins from Zalerion arboricola. IV. Biological evaluation of natural and semisynthetic pneumocandins for activity against Pneumocystis carinii and Candida species. J Antibiot (Tokyo) 1992 Dec;45(12):1886–1891. doi: 10.7164/antibiotics.45.1886. [DOI] [PubMed] [Google Scholar]
- Then R. L., Hartman P. G., Kompis I., Santi D. Selective inhibition of dihydrofolate reductase from problem human pathogens. Adv Exp Med Biol. 1993;338:533–536. doi: 10.1007/978-1-4615-2960-6_108. [DOI] [PubMed] [Google Scholar]
- Walzer P. D., Foy J., Steele P., White M. Synergistic combinations of Ro 11-8958 and other dihydrofolate reductase inhibitors with sulfamethoxazole and dapsone for therapy of experimental pneumocystosis. Antimicrob Agents Chemother. 1993 Jul;37(7):1436–1443. doi: 10.1128/aac.37.7.1436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinberg G. A., Shaw M. M. Suppressive effect of deferoxamine on the growth of Pneumocystis carinii in vitro. J Protozool. 1991 Nov-Dec;38(6):223S–224S. [PubMed] [Google Scholar]