Abstract
The suitability of liposomes as drug carriers in the treatment of drug-resistant rodent malaria was examined after covalently attaching F(ab')2 fragments of a mouse monoclonal antibody (MAb), MAb F10, raised against the host cell membranes isolated from the Plasmodium berghei-infected mouse erythrocytes, to the liposome surface. The antibody-bearing liposomes thus formed specifically recognized the P. berghei-infected mouse erythrocytes under both in vitro and in vivo conditions. No such specific binding of the liposomes with the infected cells was observed when MAb F10 was replaced by another mouse monoclonal antibody, MAb D2. Upon loading with the antimalarial drug chloroquine, the MAb F10-bearing liposomes effectively controlled not only the chloroquine-susceptible but also the chloroquine-resistant P. berghei infections in mice. The chloroquine delivered in these liposomes intravenously at a dosage of 5 mg/kg of body weight per day on days 4 and 6 postinfection completely cured the animals (75 to 90%) of chloroquine-resistant P. berghei infections. These results indicate that selective homing of chloroquine to malaria-infected erythrocytes may help to cure the chloroquine-resistant malarial infections with low doses of chloroquine.
Full Text
The Full Text of this article is available as a PDF (195.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agrawal A. K., Singhal A., Gupta C. M. Functional drug targeting to erythrocytes in vivo using antibody bearing liposomes as drug vehicles. Biochem Biophys Res Commun. 1987 Oct 14;148(1):357–361. doi: 10.1016/0006-291x(87)91118-1. [DOI] [PubMed] [Google Scholar]
- Cowman A. F. The P-glycoprotein homologues of Plasmodium falciparum: Are they involved in chloroquine resistance? Parasitol Today. 1991 Apr;7(4):70–76. doi: 10.1016/0169-4758(91)90197-v. [DOI] [PubMed] [Google Scholar]
- Galfrè G., Milstein C. Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol. 1981;73(Pt B):3–46. doi: 10.1016/0076-6879(81)73054-4. [DOI] [PubMed] [Google Scholar]
- Gupta C. M., Bali A. Carbamyl analogs of phosphatidylcholines. Synthesis, interaction with phospholipases and permeability behavior of their liposomes. Biochim Biophys Acta. 1981 Feb 23;663(2):506–515. doi: 10.1016/0005-2760(81)90178-8. [DOI] [PubMed] [Google Scholar]
- Howard R. J., Pasloske B. L. Target antigens for asexual malaria vaccine development. Parasitol Today. 1993 Oct;9(10):369–372. doi: 10.1016/0169-4758(93)90085-t. [DOI] [PubMed] [Google Scholar]
- Joshi P., Dutta G. P., Gupta C. M. An intracellular simian malarial parasite (Plasmodium knowlesi) induces stage-dependent alterations in membrane phospholipid organization of its host erythrocyte. Biochem J. 1987 Aug 15;246(1):103–108. doi: 10.1042/bj2460103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marchalonis J. J. An enzymic method for the trace iodination of immunoglobulins and other proteins. Biochem J. 1969 Jun;113(2):299–305. doi: 10.1042/bj1130299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin S. K. Chloroquine-resistant Plasmodium falciparum and the MDR phenotype. Parasitol Today. 1993 Aug;9(8):278–279. doi: 10.1016/0169-4758(93)90117-x. [DOI] [PubMed] [Google Scholar]
- Newbold C. I., Marsh K. Antigens on the Plasmodium falciparum infected erythrocyte surface are parasite derived: a reply. Parasitol Today. 1990 Oct;6(10):320–322. doi: 10.1016/0169-4758(90)90175-4. [DOI] [PubMed] [Google Scholar]
- Peeters P. A., Huiskamp C. W., Eling W. M., Crommelin D. J. Chloroquine containing liposomes in the chemotherapy of murine malaria. Parasitology. 1989 Jun;98(Pt 3):381–386. doi: 10.1017/s003118200006145x. [DOI] [PubMed] [Google Scholar]
- Perlmann H., Berzins K., Wahlgren M., Carlsson J., Björkman A., Patarroyo M. E., Perlmann P. Antibodies in malarial sera to parasite antigens in the membrane of erythrocytes infected with early asexual stages of Plasmodium falciparum. J Exp Med. 1984 Jun 1;159(6):1686–1704. doi: 10.1084/jem.159.6.1686. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schapira A., Beales P. F., Halloran M. E. Malaria: living with drug resistance. Parasitol Today. 1993 May;9(5):168–174. doi: 10.1016/0169-4758(93)90140-b. [DOI] [PubMed] [Google Scholar]
- Sherman I. W. Membrane structure and function of malaria parasites and the infected erythrocyte. Parasitology. 1985 Dec;91(Pt 3):609–645. doi: 10.1017/s0031182000062843. [DOI] [PubMed] [Google Scholar]
- Sherman I. W., Winograd E. Antigens on the Plasmodium falciparum infected erythrocyte surface are not parasite derived. Parasitol Today. 1990 Oct;6(10):317–320. doi: 10.1016/0169-4758(90)90174-3. [DOI] [PubMed] [Google Scholar]
- Singhal A., Bali A., Gupta C. M. Antibody-mediated targeting of liposomes to erythrocytes in whole blood. Biochim Biophys Acta. 1986 Jan 15;880(1):72–77. doi: 10.1016/0304-4165(86)90121-2. [DOI] [PubMed] [Google Scholar]
- Singhal A., Gupta C. M. Antibody-mediated targeting of liposomes to red cells in vivo. FEBS Lett. 1986 Jun 9;201(2):321–326. doi: 10.1016/0014-5793(86)80632-9. [DOI] [PubMed] [Google Scholar]
- Ward S. A. Mechanisms of chloroquine resistance in malarial chemotherapy. Trends Pharmacol Sci. 1988 Jul;9(7):241–246. doi: 10.1016/0165-6147(88)90153-8. [DOI] [PubMed] [Google Scholar]
- Warhurst D. C., Folwell R. O. Measurement of the growth rate of the erythrocytic stages of Plasmodium berghei and comparisons of the potency of inocula after various treatments. Ann Trop Med Parasitol. 1968 Sep;62(3):349–360. doi: 10.1080/00034983.1968.11686570. [DOI] [PubMed] [Google Scholar]