Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Jan;39(1):221–226. doi: 10.1128/aac.39.1.221

Postantibiotic effects and postantibiotic sub-MIC effects of roxithromycin, clarithromycin, and azithromycin on respiratory tract pathogens.

I Odenholt-Tornqvist 1, E Löwdin 1, O Cars 1
PMCID: PMC162512  PMID: 7695310

Abstract

Pharmacodynamic parameters have become increasingly important for the determination of the optimal dosing schedules of antibiotics. In this study, the postantibiotic effects (PAEs), the postantibiotic sub-MIC effects (PA SMEs), and the sub-MIC effects (SMEs) of roxithromycin, clarithromycin, and azithromycin on reference strains of Streptococcus pyogenes group A, Streptococcus pneumoniae, and Haemophilus influenzae were investigated. The PAE was induced by 2x MICs (S. pneumoniae) or 10x MICs of the different drugs for 2 h, and the antibiotics were eliminated by washing and dilution. The PA SMEs were studied by addition of 0.1, 0.2, and 0.3x MICs during the postantibiotic phase of the bacteria, and the SMEs were studied by exposition of the bacteria to the drugs at the sub-MICs only. Growth curves were followed by viable counts for 24 h. The SMEs were generally very short. A PAE of 2.9 to 8 h was noted for all antibiotics against all strains. Clarithromycin induced a statistically significantly shorter PAE on S. pneumoniae than did roxithromycin and azithromycin and did so also against H. influenzae in comparison with azithromycin. The PA SMEs were long and varied at 0.3x MIC between 6.4 19.6 h. This pronounced suppression of regrowth of bacteria which are first treated with a suprainhibitory concentration of antibiotics and then reexposed to sub-MIC levels indicates that long dosing intervals for macrolides and azalides can be allowed.

Full Text

The Full Text of this article is available as a PDF (211.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakker-Woudenberg I. A., Roosendaal R. Impact of dosage regimens on the efficacy of antibiotics in the immunocompromised host. J Antimicrob Chemother. 1988 Feb;21(2):145–147. doi: 10.1093/jac/21.2.145. [DOI] [PubMed] [Google Scholar]
  2. Cars O., Odenholt-Tornqvist I. The post-antibiotic sub-MIC effect in vitro and in vivo. J Antimicrob Chemother. 1993 May;31 (Suppl 500):159–166. doi: 10.1093/jac/31.suppl_d.159. [DOI] [PubMed] [Google Scholar]
  3. Craig W. A., Ebert S. C. Continuous infusion of beta-lactam antibiotics. Antimicrob Agents Chemother. 1992 Dec;36(12):2577–2583. doi: 10.1128/aac.36.12.2577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Daikos G. K. Continuous versus discontinuous antibiotic therapy: the role of the post-antibiotic effect and other factors. J Antimicrob Chemother. 1991 Feb;27(2):157–160. doi: 10.1093/jac/27.2.157. [DOI] [PubMed] [Google Scholar]
  5. Debbia E. A., Molinari G., Paglia P., Schito G. C. Post-antibiotic effect of azithromycin on respiratory tract pathogens. Drugs Exp Clin Res. 1990;16(12):615–619. [PubMed] [Google Scholar]
  6. Drusano G. L., Johnson D. E., Rosen M., Standiford H. C. Pharmacodynamics of a fluoroquinolone antimicrobial agent in a neutropenic rat model of Pseudomonas sepsis. Antimicrob Agents Chemother. 1993 Mar;37(3):483–490. doi: 10.1128/aac.37.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Drusano G. L. Role of pharmacokinetics in the outcome of infections. Antimicrob Agents Chemother. 1988 Mar;32(3):289–297. doi: 10.1128/aac.32.3.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. EAGLE H., FLEISCHMAN R., MUSSELMAN A. D. Effect of schedule of administration on the therapeutic efficacy of penicillin; importance of the aggregate time penicillin remains at effectively bactericidal levels. Am J Med. 1950 Sep;9(3):280–299. doi: 10.1016/0002-9343(50)90425-6. [DOI] [PubMed] [Google Scholar]
  9. Fantin B., Ebert S., Leggett J., Vogelman B., Craig W. A. Factors affecting duration of in-vivo postantibiotic effect for aminoglycosides against gram-negative bacilli. J Antimicrob Chemother. 1991 Jun;27(6):829–836. doi: 10.1093/jac/27.6.829. [DOI] [PubMed] [Google Scholar]
  10. Forrest A., Nix D. E., Ballow C. H., Goss T. F., Birmingham M. C., Schentag J. J. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother. 1993 May;37(5):1073–1081. doi: 10.1128/aac.37.5.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Forsgren J., Samuelson A., Ahlin A., Jonasson J., Rynnel-Dagö B., Lindberg A. Haemophilus influenzae resides and multiplies intracellularly in human adenoid tissue as demonstrated by in situ hybridization and bacterial viability assay. Infect Immun. 1994 Feb;62(2):673–679. doi: 10.1128/iai.62.2.673-679.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gemmell C. G., Peterson P. K., Schmeling D., Kim Y., Mathews J., Wannamaker L., Quie P. G. Potentiation of opsonization and phagocytosis of Streptococcus pyogenes following growth in the presence of clindamycin. J Clin Invest. 1981 May;67(5):1249–1256. doi: 10.1172/JCI110152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gerber A. U., Brugger H. P., Feller C., Stritzko T., Stalder B. Antibiotic therapy of infections due to Pseudomonas aeruginosa in normal and granulocytopenic mice: comparison of murine and human pharmacokinetics. J Infect Dis. 1986 Jan;153(1):90–97. doi: 10.1093/infdis/153.1.90. [DOI] [PubMed] [Google Scholar]
  14. Gerber A. U., Craig W. A. Growth kinetics of respiratory pathogens after short exposures to ampicillin and erythromycin in vitro. J Antimicrob Chemother. 1981 Nov;8 (Suppl 100):81–91. doi: 10.1093/jac/8.suppl_c.81. [DOI] [PubMed] [Google Scholar]
  15. Kinasewitz G., Wood R. G. Azithromycin versus cefaclor in the treatment of acute bacterial pneumonia. Eur J Clin Microbiol Infect Dis. 1991 Oct;10(10):872–877. doi: 10.1007/BF01975846. [DOI] [PubMed] [Google Scholar]
  16. Kuenzi B., Segessenmann C., Gerber A. U. Postantibiotic effect of roxithromycin, erythromycin, and clindamycin against selected gram-positive bacteria and Haemophilus influenzae. J Antimicrob Chemother. 1987 Nov;20 (Suppl B):39–46. doi: 10.1093/jac/20.suppl_b.39. [DOI] [PubMed] [Google Scholar]
  17. Kunin C. M. Dosage schedules of antimicrobial agents: a historical review. Rev Infect Dis. 1981 Jan-Feb;3(1):4–11. doi: 10.1093/clinids/3.1.4. [DOI] [PubMed] [Google Scholar]
  18. Leggett J. E., Fantin B., Ebert S., Totsuka K., Vogelman B., Calame W., Mattie H., Craig W. A. Comparative antibiotic dose-effect relations at several dosing intervals in murine pneumonitis and thigh-infection models. J Infect Dis. 1989 Feb;159(2):281–292. doi: 10.1093/infdis/159.2.281. [DOI] [PubMed] [Google Scholar]
  19. McDonald P. J., Pruul H. Macrolides and the immune system. Scand J Infect Dis Suppl. 1992;83:34–40. [PubMed] [Google Scholar]
  20. McDonald P. J., Pruul H. Phagocyte uptake and transport of azithromycin. Eur J Clin Microbiol Infect Dis. 1991 Oct;10(10):828–833. doi: 10.1007/BF01975835. [DOI] [PubMed] [Google Scholar]
  21. Milatovic D. Antibiotics and phagocytosis. Eur J Clin Microbiol. 1983 Oct;2(5):414–425. doi: 10.1007/BF02013898. [DOI] [PubMed] [Google Scholar]
  22. Odenholt-Tornqvist I., Löwdin E., Cars O. Pharmacodynamic effects of subinhibitory concentrations of beta-lactam antibiotics in vitro. Antimicrob Agents Chemother. 1991 Sep;35(9):1834–1839. doi: 10.1128/aac.35.9.1834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Odenholt-Tornqvist I., Löwdin E., Cars O. Postantibiotic sub-MIC effects of vancomycin, roxithromycin, sparfloxacin, and amikacin. Antimicrob Agents Chemother. 1992 Sep;36(9):1852–1858. doi: 10.1128/aac.36.9.1852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Odenholt-Tornqvist I. Studies on the postantibiotic effect and the postantibiotic sub-MIC effect of meropenem. J Antimicrob Chemother. 1993 Jun;31(6):881–892. doi: 10.1093/jac/31.6.881. [DOI] [PubMed] [Google Scholar]
  25. Odenholt I., Holm S. E., Cars O. Effects of benzylpenicillin on Streptococcus pyogenes during the postantibiotic phase in vitro. J Antimicrob Chemother. 1989 Aug;24(2):147–156. doi: 10.1093/jac/24.2.147. [DOI] [PubMed] [Google Scholar]
  26. Pruul H., McDonald P. J. Damage to bacteria by antibiotics in vitro and its relevance to antimicrobial chemotherapy: a historical perspective. J Antimicrob Chemother. 1988 Jun;21(6):695–698. doi: 10.1093/jac/21.6.695. [DOI] [PubMed] [Google Scholar]
  27. Van der Auwera P. Interactions between antibiotics and phagocytosis in bacterial killing. Scand J Infect Dis Suppl. 1990;74:42–48. [PubMed] [Google Scholar]
  28. Vogelman B., Craig W. A. Kinetics of antimicrobial activity. J Pediatr. 1986 May;108(5 Pt 2):835–840. doi: 10.1016/s0022-3476(86)80754-5. [DOI] [PubMed] [Google Scholar]
  29. Vogelman B., Gudmundsson S., Leggett J., Turnidge J., Ebert S., Craig W. A. Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis. 1988 Oct;158(4):831–847. doi: 10.1093/infdis/158.4.831. [DOI] [PubMed] [Google Scholar]
  30. Vogelman B., Gudmundsson S., Turnidge J., Leggett J., Craig W. A. In vivo postantibiotic effect in a thigh infection in neutropenic mice. J Infect Dis. 1988 Feb;157(2):287–298. doi: 10.1093/infdis/157.2.287. [DOI] [PubMed] [Google Scholar]
  31. Winstanley T., Edwards C., Hastings M. Post-antibiotic effect of teicoplanin. J Antimicrob Chemother. 1991 May;27(5):683–684. doi: 10.1093/jac/27.5.683. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES