Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Jan;39(1):260–263. doi: 10.1128/aac.39.1.260

Cloning, sequencing, and site-directed mutagenesis of beta-lactamase gene from Streptomyces fradiae Y59.

S Kurai 1, H Urabe 1, H Ogawara 1
PMCID: PMC162522  PMID: 7535038

Abstract

The beta-lactamase gene from Streptomyces fradiae Y59 was cloned and sequenced. To determine which amino acid residues are critical in binding activity to blue dextran, chimera beta-lactamases were constructed and their binding abilities were determined. The results suggested that blue dextran binding may depend more on overall conformation of about two-thirds of the beta-lactamase molecule from the N terminus than on the primary structure.

Full Text

The Full Text of this article is available as a PDF (217.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Branlant G., Branlant C. Nucleotide sequence of the Escherichia coli gap gene. Different evolutionary behavior of the NAD+-binding domain and of the catalytic domain of D-glyceraldehyde-3-phosphate dehydrogenase. Eur J Biochem. 1985 Jul 1;150(1):61–66. doi: 10.1111/j.1432-1033.1985.tb08988.x. [DOI] [PubMed] [Google Scholar]
  2. Forsman M., Häggström B., Lindgren L., Jaurin B. Molecular analysis of beta-lactamases from four species of Streptomyces: comparison of amino acid sequences with those of other beta-lactamases. J Gen Microbiol. 1990 Mar;136(3):589–598. doi: 10.1099/00221287-136-3-589. [DOI] [PubMed] [Google Scholar]
  3. Holmes D. S., Quigley M. A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem. 1981 Jun;114(1):193–197. doi: 10.1016/0003-2697(81)90473-5. [DOI] [PubMed] [Google Scholar]
  4. Joris B., Ghuysen J. M., Dive G., Renard A., Dideberg O., Charlier P., Frère J. M., Kelly J. A., Boyington J. C., Moews P. C. The active-site-serine penicillin-recognizing enzymes as members of the Streptomyces R61 DD-peptidase family. Biochem J. 1988 Mar 1;250(2):313–324. doi: 10.1042/bj2500313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kieser T. Factors affecting the isolation of CCC DNA from Streptomyces lividans and Escherichia coli. Plasmid. 1984 Jul;12(1):19–36. doi: 10.1016/0147-619x(84)90063-5. [DOI] [PubMed] [Google Scholar]
  6. Krauth-Siegel R. L., Blatterspiel R., Saleh M., Schiltz E., Schirmer R. H., Untucht-Grau R. Glutathione reductase from human erythrocytes. The sequences of the NADPH domain and of the interface domain. Eur J Biochem. 1982 Jan;121(2):259–267. doi: 10.1111/j.1432-1033.1982.tb05780.x. [DOI] [PubMed] [Google Scholar]
  7. Kunkel T. A., Roberts J. D., Zakour R. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 1987;154:367–382. doi: 10.1016/0076-6879(87)54085-x. [DOI] [PubMed] [Google Scholar]
  8. Lomovskaya N. D., Mkrtumian N. M., Gostimskaya N. L., Danilenko V. N. Characterization of temperate actinophage phi C31 isolated from Streptomyces coelicolor A3(2). J Virol. 1972 Feb;9(2):258–262. doi: 10.1128/jvi.9.2.258-262.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ogawara H. Antibiotic resistance in pathogenic and producing bacteria, with special reference to beta-lactam antibiotics. Microbiol Rev. 1981 Dec;45(4):591–619. doi: 10.1128/mr.45.4.591-619.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ogawara H., Horikawa S. Purification of beta-lactamase from Streptomyces cellulosae by affinity chromatography on Blue Sepharose. J Antibiot (Tokyo) 1979 Dec;32(12):1328–1335. doi: 10.7164/antibiotics.32.1328. [DOI] [PubMed] [Google Scholar]
  11. Ogawara H., Horikawa S., Shimada-Miyoshi S., Yasuzawa K. Production and property of beta-lactamases in Streptomyces: comparison of the strains isolated newly and thirty years ago. Antimicrob Agents Chemother. 1978 May;13(5):865–870. doi: 10.1128/aac.13.5.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ogawara H., Mantoku A., Shimada S. beta-lactamase from Streptomyces cacaoi. Purification and properties. J Biol Chem. 1981 Mar 25;256(6):2649–2655. [PubMed] [Google Scholar]
  13. Ogawara H. Phylogenetic tree and sequence similarity of beta-lactamases. Mol Phylogenet Evol. 1993 Jun;2(2):97–111. doi: 10.1006/mpev.1993.1010. [DOI] [PubMed] [Google Scholar]
  14. Ogawara H. Production and property of beta-lactamases in Streptomyces. Antimicrob Agents Chemother. 1975 Oct;8(4):402–408. doi: 10.1128/aac.8.4.402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ogawara H. Sequence of a gene encoding beta-lactamase from Streptomyces cellulosae. Gene. 1993 Feb 14;124(1):111–114. doi: 10.1016/0378-1119(93)90769-y. [DOI] [PubMed] [Google Scholar]
  16. Omura S., Ikeda H., Tanaka H. Extraction and characterization of plasmids from macrolide antibiotic-producing streptomycetes. J Antibiot (Tokyo) 1981 Apr;34(4):478–482. doi: 10.7164/antibiotics.34.478. [DOI] [PubMed] [Google Scholar]
  17. Perilli M., Franceschini N., Segatore B., Amicosante G., Oratore A., Duez C., Joris B., Frère J. M. Cloning and nucleotide sequencing of the gene encoding the beta-lactamase from Citrobacter diversus. FEMS Microbiol Lett. 1991 Sep 15;67(1):79–84. doi: 10.1016/0378-1097(91)90448-j. [DOI] [PubMed] [Google Scholar]
  18. Porter T. D., Kasper C. B. NADPH-cytochrome P-450 oxidoreductase: flavin mononucleotide and flavin adenine dinucleotide domains evolved from different flavoproteins. Biochemistry. 1986 Apr 8;25(7):1682–1687. doi: 10.1021/bi00355a036. [DOI] [PubMed] [Google Scholar]
  19. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sendouda A., Urabe H., Ogawara H. Cloning, nucleotide sequence and expression of a beta-lactamase gene from Streptomyces lavendulae. FEMS Microbiol Lett. 1993 Sep 15;112(3):343–348. doi: 10.1111/j.1574-6968.1993.tb06473.x. [DOI] [PubMed] [Google Scholar]
  21. Seoane A., García Lobo J. M. Nucleotide sequence of a new class A beta-lactamase gene from the chromosome of Yersinia enterocolitica: implications for the evolution of class A beta-lactamases. Mol Gen Genet. 1991 Aug;228(1-2):215–220. doi: 10.1007/BF00282468. [DOI] [PubMed] [Google Scholar]
  22. Smith H. O. Recovery of DNA from gels. Methods Enzymol. 1980;65(1):371–380. doi: 10.1016/s0076-6879(80)65048-4. [DOI] [PubMed] [Google Scholar]
  23. Thompson S. T., Cass K. H., Stellwagen E. Blue dextran-sepharose: an affinity column for the dinucleotide fold in proteins. Proc Natl Acad Sci U S A. 1975 Feb;72(2):669–672. doi: 10.1073/pnas.72.2.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Urabe H., Ogawara H. Nucleotide sequence and transcriptional analysis of activator-regulator proteins for beta-lactamase in Streptomyces cacaoi. J Bacteriol. 1992 May;174(9):2834–2842. doi: 10.1128/jb.174.9.2834-2842.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Urabe H., Toyama K., Ogawara H. Cloning from Streptomyces cellulosae of the gene encoding beta-lactamase, a blue-dextran binding protein. J Antibiot (Tokyo) 1990 Nov;43(11):1483–1488. doi: 10.7164/antibiotics.43.1483. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES