Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Feb;39(2):279–289. doi: 10.1128/aac.39.2.279

Trimethoprim and sulfonamide resistance.

P Huovinen 1, L Sundström 1, G Swedberg 1, O Sköld 1
PMCID: PMC162528  PMID: 7726483

Full Text

The Full Text of this article is available as a PDF (279.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AKIBA T., KOYAMA K., ISHIKI Y., KIMURA S., FUKUSHIMA T. On the mechanism of the development of multiple-drug-resistant clones of Shigella. Jpn J Microbiol. 1960 Apr;4:219–227. doi: 10.1111/j.1348-0421.1960.tb00170.x. [DOI] [PubMed] [Google Scholar]
  2. Abremski K. E., Hoess R. H. Evidence for a second conserved arginine residue in the integrase family of recombination proteins. Protein Eng. 1992 Jan;5(1):87–91. doi: 10.1093/protein/5.1.87. [DOI] [PubMed] [Google Scholar]
  3. Acar J. F., Goldstein F., Chabbert Y. A. Synergistic activity of trimethoprim-sulfamethoxazole on gram-negative bacilli: observations in vitro and in vivo. J Infect Dis. 1973 Nov;128(Suppl):470–p. doi: 10.1093/infdis/128.supplement_3.s470. [DOI] [PubMed] [Google Scholar]
  4. Amyes S. G., Smith J. T. R-factor trimethoprim resistance mechanism: an insusceptible target site. Biochem Biophys Res Commun. 1974 May 20;58(2):412–418. doi: 10.1016/0006-291x(74)90380-5. [DOI] [PubMed] [Google Scholar]
  5. Appleman J. R., Howell E. E., Kraut J., Blakley R. L. Role of aspartate 27 of dihydrofolate reductase from Escherichia coli in interconversion of active and inactive enzyme conformers and binding of NADPH. J Biol Chem. 1990 Apr 5;265(10):5579–5584. [PubMed] [Google Scholar]
  6. Argos P., Landy A., Abremski K., Egan J. B., Haggard-Ljungquist E., Hoess R. H., Kahn M. L., Kalionis B., Narayana S. V., Pierson L. S., 3rd The integrase family of site-specific recombinases: regional similarities and global diversity. EMBO J. 1986 Feb;5(2):433–440. doi: 10.1002/j.1460-2075.1986.tb04229.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. BROWN G. M. The biosynthesis of folic acid. II. Inhibition by sulfonamides. J Biol Chem. 1962 Feb;237:536–540. [PubMed] [Google Scholar]
  8. Bandres J. C., Mathewson J. J., Ericsson C. D., Dupont H. L. Trimethoprim/sulfamethoxazole remains active against enterotoxigenic Escherichia coli and Shigella species in Guadalajara, Mexico. Am J Med Sci. 1992 May;303(5):289–291. doi: 10.1097/00000441-199205000-00003. [DOI] [PubMed] [Google Scholar]
  9. Bannatyne R. M., Toma S., Cheung R., Hu G. Resistance to trimethoprim and other antibiotics in Ontario shigellae. Lancet. 1980 Feb 23;1(8165):425–426. doi: 10.1016/s0140-6736(80)90977-0. [DOI] [PubMed] [Google Scholar]
  10. Barg N. L., Hutson F. S., Wheeler L. A., Thomson C. J., Amyes S. G., Wharton M., Schaffner W. Novel dihydrofolate reductases isolated from epidemic strains of trimethoprim/sulfamethoxazole-resistant Shigella sonnei. J Infect Dis. 1990 Aug;162(2):466–473. doi: 10.1093/infdis/162.2.466. [DOI] [PubMed] [Google Scholar]
  11. Bennish M. L., Salam M. A., Hossain M. A., Myaux J., Khan E. H., Chakraborty J., Henry F., Ronsmans C. Antimicrobial resistance of Shigella isolates in Bangladesh, 1983-1990: increasing frequency of strains multiply resistant to ampicillin, trimethoprim-sulfamethoxazole, and nalidixic acid. Clin Infect Dis. 1992 May;14(5):1055–1060. doi: 10.1093/clinids/14.5.1055. [DOI] [PubMed] [Google Scholar]
  12. Bratoeva M. P., John J. F., Jr Dissemination of trimethoprim-resistant clones of Shigella sonnei in Bulgaria. J Infect Dis. 1989 Apr;159(4):648–653. doi: 10.1093/infdis/159.4.648. [DOI] [PubMed] [Google Scholar]
  13. Brisson N., Hohn T. Nucleotide sequence of the dihydrofolate-reductase gene borne by the plasmid R67 and conferring methotrexate resistance. Gene. 1984 May;28(2):271–274. doi: 10.1016/0378-1119(84)90266-x. [DOI] [PubMed] [Google Scholar]
  14. Brown N. L., Misra T. K., Winnie J. N., Schmidt A., Seiff M., Silver S. The nucleotide sequence of the mercuric resistance operons of plasmid R100 and transposon Tn501: further evidence for mer genes which enhance the activity of the mercuric ion detoxification system. Mol Gen Genet. 1986 Jan;202(1):143–151. doi: 10.1007/BF00330531. [DOI] [PubMed] [Google Scholar]
  15. Brumfitt W., Hamilton-Miller J. M. Co-trimoxazole or trimethoprim alone? A viewpoint on their relative place in therapy. Drugs. 1982 Dec;24(6):453–458. doi: 10.2165/00003495-198224060-00001. [DOI] [PubMed] [Google Scholar]
  16. Brumfitt W., Hamilton-Miller J. M., Wood A. Evidence for a slowing in trimethoprim resistance during 1981--a comparison with earlier years. J Antimicrob Chemother. 1983 Jun;11(6):503–509. doi: 10.1093/jac/11.6.503. [DOI] [PubMed] [Google Scholar]
  17. Bushby S. R., Hitchings G. H. Trimethoprim, a sulphonamide potentiator. Br J Pharmacol Chemother. 1968 May;33(1):72–90. doi: 10.1111/j.1476-5381.1968.tb00475.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Cameron F. H., Groot Obbink D. J., Ackerman V. P., Hall R. M. Nucleotide sequence of the AAD(2'') aminoglycoside adenylyltransferase determinant aadB. Evolutionary relationship of this region with those surrounding aadA in R538-1 and dhfrII in R388. Nucleic Acids Res. 1986 Nov 11;14(21):8625–8635. doi: 10.1093/nar/14.21.8625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Chang L. L., Chang S. F., Chow T. Y., Wu W. J., Chang J. C. The distribution of the DHFR genes in trimethoprim-resistant urinary tract isolates from Taiwan. Epidemiol Infect. 1992 Dec;109(3):453–462. doi: 10.1017/s0950268800050445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Chatkaeomorakot A., Echeverria P., Taylor D. N., Seriwatana J., Leksomboon U. Trimethoprim-resistant Shigella and enterotoxigenic Escherichia coli strains in children in Thailand. Pediatr Infect Dis J. 1987 Aug;6(8):735–739. doi: 10.1097/00006454-198708000-00008. [DOI] [PubMed] [Google Scholar]
  21. Chiou C. S., Jones A. L. Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. J Bacteriol. 1993 Feb;175(3):732–740. doi: 10.1128/jb.175.3.732-740.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Collignon P. J., Bell J. M., MacInnes S. J., Gilbert G. L., Toohey M. A national collaborative study of resistance to antimicrobial agents in Haemophilus influenzae in Australian hospitals. The Australian Group for Antimicrobial Resistance (AGAR). J Antimicrob Chemother. 1992 Aug;30(2):153–163. doi: 10.1093/jac/30.2.153. [DOI] [PubMed] [Google Scholar]
  23. Collis C. M., Hall R. M. Gene cassettes from the insert region of integrons are excised as covalently closed circles. Mol Microbiol. 1992 Oct;6(19):2875–2885. doi: 10.1111/j.1365-2958.1992.tb01467.x. [DOI] [PubMed] [Google Scholar]
  24. Collis C. M., Hall R. M. Site-specific deletion and rearrangement of integron insert genes catalyzed by the integron DNA integrase. J Bacteriol. 1992 Mar;174(5):1574–1585. doi: 10.1128/jb.174.5.1574-1585.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Cove J. H., Eady E. A., Cunliffe W. J. Skin carriage of antibiotic-resistant coagulase-negative staphylococci in untreated subjects. J Antimicrob Chemother. 1990 Mar;25(3):459–469. doi: 10.1093/jac/25.3.459. [DOI] [PubMed] [Google Scholar]
  26. Craig N. L. The mechanism of conservative site-specific recombination. Annu Rev Genet. 1988;22:77–105. doi: 10.1146/annurev.ge.22.120188.000453. [DOI] [PubMed] [Google Scholar]
  27. Craig N. L. Tn7: a target site-specific transposon. Mol Microbiol. 1991 Nov;5(11):2569–2573. doi: 10.1111/j.1365-2958.1991.tb01964.x. [DOI] [PubMed] [Google Scholar]
  28. Dale G. E., Then R. L., Stüber D. Characterization of the gene for chromosomal trimethoprim-sensitive dihydrofolate reductase of Staphylococcus aureus ATCC 25923. Antimicrob Agents Chemother. 1993 Jul;37(7):1400–1405. doi: 10.1128/aac.37.7.1400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Dallas W. S., Gowen J. E., Ray P. H., Cox M. J., Dev I. K. Cloning, sequencing, and enhanced expression of the dihydropteroate synthase gene of Escherichia coli MC4100. J Bacteriol. 1992 Sep;174(18):5961–5970. doi: 10.1128/jb.174.18.5961-5970.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Datta N., Dacey S., Hughes V., Knight S., Richards H., Williams G., Casewell M., Shannon K. P. Distribution of genes for trimethoprim and gentamicin resistance in bacteria and their plasmids in a general hospital. J Gen Microbiol. 1980 Jun;118(2):495–508. doi: 10.1099/00221287-118-2-495. [DOI] [PubMed] [Google Scholar]
  31. Escande F., Gerbaud G., Martel J. L., Courvalin P. Resistance to trimethoprim and 2,4-diamino-6,7-diisopropyl-pteridine (0/129) in Pasteurella haemolytica. Vet Microbiol. 1991 Jan;26(1-2):107–114. doi: 10.1016/0378-1135(91)90047-j. [DOI] [PubMed] [Google Scholar]
  32. Fleming M. P., Datta N., Grüneberg R. N. Trimethoprim resistance determined by R factors. Br Med J. 1972 Mar 18;1(5802):726–728. doi: 10.1136/bmj.1.5802.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Flensburg J., Sköld O. Massive overproduction of dihydrofolate reductase in bacteria as a response to the use of trimethoprim. Eur J Biochem. 1987 Feb 2;162(3):473–476. doi: 10.1111/j.1432-1033.1987.tb10664.x. [DOI] [PubMed] [Google Scholar]
  34. Fling M. E., Kope J., Richards C. Characterization of plasmid pAZ1 and the type III dihydrofolate reductase gene. Plasmid. 1988 Jan;19(1):30–38. doi: 10.1016/0147-619x(88)90060-1. [DOI] [PubMed] [Google Scholar]
  35. Fling M. E., Richards C. The nucleotide sequence of the trimethoprim-resistant dihydrofolate reductase gene harbored by Tn7. Nucleic Acids Res. 1983 Aug 11;11(15):5147–5158. doi: 10.1093/nar/11.15.5147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Frosolono M., Hodel-Christian S. L., Murray B. E. Lack of homology of enterococci which have high-level resistance to trimethoprim with the dfrA gene of Staphylococcus aureus. Antimicrob Agents Chemother. 1991 Sep;35(9):1928–1930. doi: 10.1128/aac.35.9.1928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. George M. J., Kitch B., Henderson F. W., Gilligan P. H. In vitro activity of orally administered antimicrobial agents against Haemophilus influenzae recovered from children monitored longitudinally in a group day-care center. Antimicrob Agents Chemother. 1991 Oct;35(10):1960–1964. doi: 10.1128/aac.35.10.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Goldstein F. W., Papadopoulou B., Acar J. F. The changing pattern of trimethoprim resistance in Paris, with a review of worldwide experience. Rev Infect Dis. 1986 Sep-Oct;8(5):725–737. doi: 10.1093/clinids/8.5.725. [DOI] [PubMed] [Google Scholar]
  39. Graham D. Y., Klein P. D., Opekun A. R., Smith K. E., Polasani R. R., Evans D. J., Jr, Evans D. G., Alpert L. C., Michaletz P. A., Yoshimura H. H. In vivo susceptibility of Campylobacter pylori. Am J Gastroenterol. 1989 Mar;84(3):233–238. [PubMed] [Google Scholar]
  40. Grayson M. L., Thauvin-Eliopoulos C., Eliopoulos G. M., Yao J. D., DeAngelis D. V., Walton L., Woolley J. L., Moellering R. C., Jr Failure of trimethoprim-sulfamethoxazole therapy in experimental enterococcal endocarditis. Antimicrob Agents Chemother. 1990 Sep;34(9):1792–1794. doi: 10.1128/aac.34.9.1792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Griffin P. M., Tauxe R. V., Redd S. C., Puhr N. D., Hargrett-Bean N., Blake P. A. Emergence of highly trimethoprim-sulfamethoxazole-resistant Shigella in a native American population: an epidemiologic study. Am J Epidemiol. 1989 May;129(5):1042–1051. doi: 10.1093/oxfordjournals.aje.a115208. [DOI] [PubMed] [Google Scholar]
  42. Gross R. J., Threlfall E. J., Ward L. R., Rowe B. Drug resistance in Shigella dysenteriae, S flexneri and S boydii in England and Wales: increasing incidence of resistance to trimethoprim. Br Med J (Clin Res Ed) 1984 Mar 10;288(6419):784–786. doi: 10.1136/bmj.288.6419.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Grüneberg R. N. Changes in the antibiotic sensitivities of urinary pathogens, 1971-1989. J Antimicrob Chemother. 1990 Dec;26 (Suppl F):3–11. doi: 10.1093/jac/26.suppl_f.3. [DOI] [PubMed] [Google Scholar]
  44. Hamilton-Miller J. M., Gooding A., Brumfitt W. Resistance to trimethoprim in 1978-79 compared with 1973-75. J Clin Pathol. 1981 Apr;34(4):439–442. doi: 10.1136/jcp.34.4.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Hamilton-Miller J. M., Purves D. Trimethoprim resistance and trimethoprim usage in and around The Royal Free Hospital in 1985. J Antimicrob Chemother. 1986 Nov;18(5):643–644. doi: 10.1093/jac/18.5.643. [DOI] [PubMed] [Google Scholar]
  46. Hansson H. B., Walder M., Juhlin I. Susceptibility of shigellae to mecillinam, nalidixic acid, trimethoprim, and five other antimicrobial agents. Antimicrob Agents Chemother. 1981 Feb;19(2):271–273. doi: 10.1128/aac.19.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Harnett N. High level resistance to trimethoprim, cotrimoxazole and other antimicrobial agents among clinical isolates of Shigella species in Ontario, Canada--an update. Epidemiol Infect. 1992 Dec;109(3):463–472. doi: 10.1017/s0950268800050457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Harnett N., McLeod S., AuYong Y., Krishnan C. Increasing incidence of resistance among shigellae to trimethoprim. Lancet. 1991 Mar 9;337(8741):622–622. doi: 10.1016/0140-6736(91)91694-p. [DOI] [PubMed] [Google Scholar]
  49. Harnett N. Transferable high-level trimethoprim resistance among isolates of Escherichia coli from urinary tract infections in Ontario, Canada. Epidemiol Infect. 1992 Dec;109(3):473–481. doi: 10.1017/s0950268800050469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Heffernan H. M. Antibiotic resistance among Salmonella from human and other sources in New Zealand. Epidemiol Infect. 1991 Feb;106(1):17–23. doi: 10.1017/s0950268800056405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Heikkilä E., Renkonen O. V., Sunila R., Uurasmaa P., Huovinen P. The emergence and mechanisms of trimethoprim resistance in Escherichia coli isolated from outpatients in Finland. J Antimicrob Chemother. 1990 Feb;25(2):275–283. doi: 10.1093/jac/25.2.275. [DOI] [PubMed] [Google Scholar]
  52. Heikkilä E., Siitonen A., Jahkola M., Fling M., Sundström L., Huovinen P. Increase of trimethoprim resistance among Shigella species, 1975-1988: analysis of resistance mechanisms. J Infect Dis. 1990 Jun;161(6):1242–1248. doi: 10.1093/infdis/161.6.1242. [DOI] [PubMed] [Google Scholar]
  53. Heikkilä E., Skurnik M., Sundström L., Huovinen P. A novel dihydrofolate reductase cassette inserted in an integron borne on a Tn21-like element. Antimicrob Agents Chemother. 1993 Jun;37(6):1297–1304. doi: 10.1128/aac.37.6.1297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Heikkilä E., Sundström L., Huovinen P. Trimethoprim resistance in Escherichia coli isolates from a geriatric unit. Antimicrob Agents Chemother. 1990 Oct;34(10):2013–2015. doi: 10.1128/aac.34.10.2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Heikkilä E., Sundström L., Skurnik M., Huovinen P. Analysis of genetic localization of the type I trimethoprim resistance gene from Escherichia coli isolated in Finland. Antimicrob Agents Chemother. 1991 Aug;35(8):1562–1569. doi: 10.1128/aac.35.8.1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Huovinen P., Mattila T., Kiminki O., Pulkkinen L., Huovinen S., Koskela M., Sunila R., Toivanen P. Emergence of trimethoprim resistance in fecal flora. Antimicrob Agents Chemother. 1985 Aug;28(2):354–356. doi: 10.1128/aac.28.2.354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Huovinen P. Recording of antimicrobial resistance of urinary tract isolates--effect of repeat samples on resistance levels. J Antimicrob Chemother. 1985 Oct;16(4):443–447. doi: 10.1093/jac/16.4.443. [DOI] [PubMed] [Google Scholar]
  58. Huovinen P., Toivanen P. Trimethoprim resistance in Finland after five years' use of plain trimethoprim. Br Med J. 1980 Jan 12;280(6207):72–74. doi: 10.1136/bmj.280.6207.72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Huovinen P. Trimethoprim resistance. Antimicrob Agents Chemother. 1987 Oct;31(10):1451–1456. doi: 10.1128/aac.31.10.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Huovinen S., Kotilainen P., Järvinen H., Malanin K., Sarna S., Helander I., Huovinen P. Comparison of ciprofloxacin or trimethoprim therapy for venous leg ulcers: results of a pilot study. J Am Acad Dermatol. 1994 Aug;31(2 Pt 1):279–281. doi: 10.1016/s0190-9622(08)81980-9. [DOI] [PubMed] [Google Scholar]
  61. Jansson C., Franklin A., Sköld O. Spread of a newly found trimethoprim resistance gene, dhfrIX, among porcine isolates and human pathogens. Antimicrob Agents Chemother. 1992 Dec;36(12):2704–2708. doi: 10.1128/aac.36.12.2704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Jansson C., Franklin A., Sköld O. Trimethoprim resistance arising in animal bacteria and transferring into human pathogens. J Infect Dis. 1993 Mar;167(3):785–787. doi: 10.1093/infdis/167.3.785. [DOI] [PubMed] [Google Scholar]
  63. Jansson C., Sköld O. Appearance of a new trimethoprim resistance gene, dhfrIX, in Escherichia coli from swine. Antimicrob Agents Chemother. 1991 Sep;35(9):1891–1899. doi: 10.1128/aac.35.9.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Jorgensen J. H., Doern G. V., Maher L. A., Howell A. W., Redding J. S. Antimicrobial resistance among respiratory isolates of Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae in the United States. Antimicrob Agents Chemother. 1990 Nov;34(11):2075–2080. doi: 10.1128/aac.34.11.2075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Jorgensen J. H. Update on mechanisms and prevalence of antimicrobial resistance in Haemophilus influenzae. Clin Infect Dis. 1992 May;14(5):1119–1123. doi: 10.1093/clinids/14.5.1119. [DOI] [PubMed] [Google Scholar]
  66. Joyner S. S., Fling M. E., Stone D., Baccanari D. P. Characterization of an R-plasmid dihydrofolate reductase with a monomeric structure. J Biol Chem. 1984 May 10;259(9):5851–5856. [PubMed] [Google Scholar]
  67. Kasanen A., Sundquist H. Trimethoprim alone in the treatment of urinary tract infections: eight years of experience in Finland. Rev Infect Dis. 1982 Mar-Apr;4(2):358–365. doi: 10.1093/clinids/4.2.358. [DOI] [PubMed] [Google Scholar]
  68. Kayser F. H., Morenzoni G., Santanam P. The Second European Collaborative Study on the frequency of antimicrobial resistance in Haemophilus influenzae. Eur J Clin Microbiol Infect Dis. 1990 Nov;9(11):810–817. doi: 10.1007/BF01967379. [DOI] [PubMed] [Google Scholar]
  69. King C. H., Shlaes D. M., Dul M. J. Infection caused by thymidine-requiring, trimethoprim-resistant bacteria. J Clin Microbiol. 1983 Jul;18(1):79–83. doi: 10.1128/jcm.18.1.79-83.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Kitts P. A., Nash H. A. Homology-dependent interactions in phage lambda site-specific recombination. Nature. 1987 Sep 24;329(6137):346–348. doi: 10.1038/329346a0. [DOI] [PubMed] [Google Scholar]
  71. Kotilainen P., Nikoskelainen J., Huovinen P. Antibiotic susceptibility of coagulase-negative staphylococcal blood isolates with special reference to adherent, slime-producing Staphylococcus epidermidis strains. Scand J Infect Dis. 1991;23(3):325–332. doi: 10.3109/00365549109024318. [DOI] [PubMed] [Google Scholar]
  72. Kristiansen B. E., Rådström P., Jenkins A., Ask E., Facinelli B., Sköld O. Cloning and characterization of a DNA fragment that confers sulfonamide resistance in a serogroup B, serotype 15 strain of Neisseria meningitidis. Antimicrob Agents Chemother. 1990 Nov;34(11):2277–2279. doi: 10.1128/aac.34.11.2277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Kuijper E. J., Peeters M. F., Schoenmakers B. S., Zanen H. C. Antimicrobial susceptibility of sixty human fecal isolates of Aeromonas species. Eur J Clin Microbiol Infect Dis. 1989 Mar;8(3):248–250. doi: 10.1007/BF01965270. [DOI] [PubMed] [Google Scholar]
  74. Kwaga J., Iversen J. O. In vitro antimicrobial susceptibilities of Yersinia enterocolitica and related species isolated from slaughtered pigs and pork products. Antimicrob Agents Chemother. 1990 Dec;34(12):2423–2425. doi: 10.1128/aac.34.12.2423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Lamikanra A., Ndep R. B. Trimethoprim resistance in urinary tract pathogens in two Nigerian hospitals. J Antimicrob Chemother. 1989 Jan;23(1):151–154. doi: 10.1093/jac/23.1.151. [DOI] [PubMed] [Google Scholar]
  76. Lester S. C., del Pilar Pla M., Wang F., Perez Schael I., Jiang H., O'Brien T. F. The carriage of Escherichia coli resistant to antimicrobial agents by healthy children in Boston, in Caracas, Venezuela, and in Qin Pu, China. N Engl J Med. 1990 Aug 2;323(5):285–289. doi: 10.1056/NEJM199008023230501. [DOI] [PubMed] [Google Scholar]
  77. Lichtenstein C., Brenner S. Site-specific properties of Tn7 transposition into the E. coli chromosome. Mol Gen Genet. 1981;183(2):380–387. doi: 10.1007/BF00270644. [DOI] [PubMed] [Google Scholar]
  78. Lopez-Brea M., Collado L., Vicente F., Perez-Diaz J. C. Increasing antimicrobial resistance of Shigella sonnei. J Antimicrob Chemother. 1983 Jun;11(6):598–598. doi: 10.1093/jac/11.6.598. [DOI] [PubMed] [Google Scholar]
  79. Lopez P., Espinosa M., Greenberg B., Lacks S. A. Sulfonamide resistance in Streptococcus pneumoniae: DNA sequence of the gene encoding dihydropteroate synthase and characterization of the enzyme. J Bacteriol. 1987 Sep;169(9):4320–4326. doi: 10.1128/jb.169.9.4320-4326.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Lévesque C., Piché L., Larose C., Roy P. H. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother. 1995 Jan;39(1):185–191. doi: 10.1128/aac.39.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Martin C., Timm J., Rauzier J., Gomez-Lus R., Davies J., Gicquel B. Transposition of an antibiotic resistance element in mycobacteria. Nature. 1990 Jun 21;345(6277):739–743. doi: 10.1038/345739a0. [DOI] [PubMed] [Google Scholar]
  82. Martinez E., de la Cruz F. Genetic elements involved in Tn21 site-specific integration, a novel mechanism for the dissemination of antibiotic resistance genes. EMBO J. 1990 Apr;9(4):1275–1281. doi: 10.1002/j.1460-2075.1990.tb08236.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Maskell R., Okubadejo O. A., Payne R. H., Pead L. Human infections with thymine-requiring bacteria. J Med Microbiol. 1978 Feb;11(1):33–45. doi: 10.1099/00222615-11-1-33. [DOI] [PubMed] [Google Scholar]
  84. Maskell R. Trimethoprim resistance in Gram negative urinary pathogens. Br Med J (Clin Res Ed) 1985 Jan 12;290(6462):156–156. doi: 10.1136/bmj.290.6462.156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Mathews C. K., Sinha N. K. Are DNA precursors concentrated at replication sites? Proc Natl Acad Sci U S A. 1982 Jan;79(2):302–306. doi: 10.1073/pnas.79.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Matthews D. A., Bolin J. T., Burridge J. M., Filman D. J., Volz K. W., Kaufman B. T., Beddell C. R., Champness J. N., Stammers D. K., Kraut J. Refined crystal structures of Escherichia coli and chicken liver dihydrofolate reductase containing bound trimethoprim. J Biol Chem. 1985 Jan 10;260(1):381–391. [PubMed] [Google Scholar]
  87. Matthews D. A., Bolin J. T., Burridge J. M., Filman D. J., Volz K. W., Kraut J. Dihydrofolate reductase. The stereochemistry of inhibitor selectivity. J Biol Chem. 1985 Jan 10;260(1):392–399. [PubMed] [Google Scholar]
  88. Mollet B., Iida S., Shepherd J., Arber W. Nucleotide sequence of IS26, a new prokaryotic mobile genetic element. Nucleic Acids Res. 1983 Sep 24;11(18):6319–6330. doi: 10.1093/nar/11.18.6319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Murray B. E., Alvarado T., Kim K. H., Vorachit M., Jayanetra P., Levine M. M., Prenzel I., Fling M., Elwell L., McCracken G. H. Increasing resistance to trimethoprim-sulfamethoxazole among isolates of Escherichia coli in developing countries. J Infect Dis. 1985 Dec;152(6):1107–1113. doi: 10.1093/infdis/152.6.1107. [DOI] [PubMed] [Google Scholar]
  90. Murray B. E. Antibiotic treatment of enterococcal infections. Antimicrob Agents Chemother. 1989 Aug;33(8):1411–1411. doi: 10.1128/aac.33.8.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Murray B. E., Mathewson J. J., DuPont H. L., Ericsson C. D., Reves R. R. Emergence of resistant fecal Escherichia coli in travelers not taking prophylactic antimicrobial agents. Antimicrob Agents Chemother. 1990 Apr;34(4):515–518. doi: 10.1128/aac.34.4.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Murray B. E., Rensimer E. R., DuPont H. L. Emergence of high-level trimethoprim resistance in fecal Escherichia coli during oral administration of trimethoprim or trimethoprim--sulfamethoxazole. N Engl J Med. 1982 Jan 21;306(3):130–135. doi: 10.1056/NEJM198201213060302. [DOI] [PubMed] [Google Scholar]
  93. Muñoz R., Coffey T. J., Daniels M., Dowson C. G., Laible G., Casal J., Hakenbeck R., Jacobs M., Musser J. M., Spratt B. G. Intercontinental spread of a multiresistant clone of serotype 23F Streptococcus pneumoniae. J Infect Dis. 1991 Aug;164(2):302–306. doi: 10.1093/infdis/164.2.302. [DOI] [PubMed] [Google Scholar]
  94. Muńoz P., Díaz M. D., Rodríguez-Créixems M., Cercenado E., Peláez T., Bouza E. Antimicrobial resistance of Salmonella isolates in a Spanish hospital. Antimicrob Agents Chemother. 1993 May;37(5):1200–1202. doi: 10.1128/aac.37.5.1200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Novak P., Stone D., Burchall J. J. R plasmid dihydrofolate reductase with a dimeric subunit structure. J Biol Chem. 1983 Sep 25;258(18):10956–10959. [PubMed] [Google Scholar]
  96. O'Brien T. F., Acar J. F., Altmann G., Blackburn B. O., Chao L., Courtieu A. L., Evans D. A., Guzman M., Holmes M., Jacobs M. R. Laboratory surveillance of synergy between and resistance to trimethoprim and sulfonamides. Rev Infect Dis. 1982 Mar-Apr;4(2):351–357. doi: 10.1093/clinids/4.2.351. [DOI] [PubMed] [Google Scholar]
  97. Ouellette M., Bissonnette L., Roy P. H. Precise insertion of antibiotic resistance determinants into Tn21-like transposons: nucleotide sequence of the OXA-1 beta-lactamase gene. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7378–7382. doi: 10.1073/pnas.84.21.7378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Ouellette M., Roy P. H. Homology of ORFs from Tn2603 and from R46 to site-specific recombinases. Nucleic Acids Res. 1987 Dec 10;15(23):10055–10055. doi: 10.1093/nar/15.23.10055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. PATO M. L., BROWN G. M. MECHANISMS OF RESISTANCE OF ESCHERICHIA COLI TO SULFONAMIDES. Arch Biochem Biophys. 1963 Dec;103:443–448. doi: 10.1016/0003-9861(63)90435-1. [DOI] [PubMed] [Google Scholar]
  100. Palenque E., Otero J. R., Noriega A. R. High prevalence of non-epidemic Shigella sonnei resistant to co-trimoxazole. J Antimicrob Chemother. 1983 Feb;11(2):196–198. doi: 10.1093/jac/11.2.196. [DOI] [PubMed] [Google Scholar]
  101. Parsons Y., Hall R. M., Stokes H. W. A new trimethoprim resistance gene, dhfrX, in the In7 integron of plasmid pDGO100. Antimicrob Agents Chemother. 1991 Nov;35(11):2436–2439. doi: 10.1128/aac.35.11.2436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Pattishall K. H., Acar J., Burchall J. J., Goldstein F. W., Harvey R. J. Two distinct types of trimethoprim-resistant dihydrofolate reductase specified by R-plasmids of different compatibility groups. J Biol Chem. 1977 Apr 10;252(7):2319–2323. [PubMed] [Google Scholar]
  103. Paulsen I. T., Littlejohn T. G., Rådström P., Sundström L., Sköld O., Swedberg G., Skurray R. A. The 3' conserved segment of integrons contains a gene associated with multidrug resistance to antiseptics and disinfectants. Antimicrob Agents Chemother. 1993 Apr;37(4):761–768. doi: 10.1128/aac.37.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Pfefferkorn E. R., Borotz S. E., Nothnagel R. F. Toxoplasma gondii: characterization of a mutant resistant to sulfonamides. Exp Parasitol. 1992 May;74(3):261–270. doi: 10.1016/0014-4894(92)90149-5. [DOI] [PubMed] [Google Scholar]
  105. Pham J. N., Bell S. M., Lanzarone J. Y. Biotype and antibiotic sensitivity of 100 clinical isolates of Yersinia enterocolitica. J Antimicrob Chemother. 1991 Jul;28(1):13–18. doi: 10.1093/jac/28.1.13. [DOI] [PubMed] [Google Scholar]
  106. Powell M., Hu Y., Livermore D. M. Resistance to trimethoprim in Haemophilus influenzae. Infection. 1991 May-Jun;19(3):174–177. doi: 10.1007/BF01643245. [DOI] [PubMed] [Google Scholar]
  107. Powell M., Yeo S. F., Seymour A., Yuan M., Williams J. D., Fah Y. S. Antimicrobial resistance in Haemophilus influenzae from England and Scotland in 1991. J Antimicrob Chemother. 1992 May;29(5):547–554. doi: 10.1093/jac/29.5.547. [DOI] [PubMed] [Google Scholar]
  108. Pulkkinen L., Huovinen P., Vuorio E., Toivanen P. Characterization of trimethoprim resistance by use of probes specific for transposon Tn7. Antimicrob Agents Chemother. 1984 Jul;26(1):82–86. doi: 10.1128/aac.26.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Pérez Trallero E., López Lopatequi C., Jiménez Alfaro J. A., García Arenzana J. M. Epidemic Shigella sonnei resistant to co-trimoxazole. Lancet. 1981 Oct 3;2(8249):751–751. doi: 10.1016/s0140-6736(81)91077-1. [DOI] [PubMed] [Google Scholar]
  110. Rao P. S., Rajashekar V., Varghese G. K., Shivananda P. G. Emergence of multidrug-resistant Salmonella typhi in rural southern India. Am J Trop Med Hyg. 1993 Jan;48(1):108–111. doi: 10.4269/ajtmh.1993.48.108. [DOI] [PubMed] [Google Scholar]
  111. Reves R. R., Fong M., Pickering L. K., Bartlett A., 3rd, Alvarez M., Murray B. E. Risk factors for fecal colonization with trimethoprim-resistant and multiresistant Escherichia coli among children in day-care centers in Houston, Texas. Antimicrob Agents Chemother. 1990 Jul;34(7):1429–1434. doi: 10.1128/aac.34.7.1429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Richards H., Datta N. Transposons and trimethoprim resistance. Br Med J (Clin Res Ed) 1981 Apr 4;282(6270):1118–1119. doi: 10.1136/bmj.282.6270.1118-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Roland S., Ferone R., Harvey R. J., Styles V. L., Morrison R. W. The characteristics and significance of sulfonamides as substrates for Escherichia coli dihydropteroate synthase. J Biol Chem. 1979 Oct 25;254(20):10337–10345. [PubMed] [Google Scholar]
  114. Rouch D. A., Messerotti L. J., Loo L. S., Jackson C. A., Skurray R. A. Trimethoprim resistance transposon Tn4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS257. Mol Microbiol. 1989 Feb;3(2):161–175. doi: 10.1111/j.1365-2958.1989.tb01805.x. [DOI] [PubMed] [Google Scholar]
  115. Rådström P., Fermér C., Kristiansen B. E., Jenkins A., Sköld O., Swedberg G. Transformational exchanges in the dihydropteroate synthase gene of Neisseria meningitidis: a novel mechanism for acquisition of sulfonamide resistance. J Bacteriol. 1992 Oct;174(20):6386–6393. doi: 10.1128/jb.174.20.6386-6393.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Rådström P., Sköld O., Swedberg G., Flensburg J., Roy P. H., Sundström L. Transposon Tn5090 of plasmid R751, which carries an integron, is related to Tn7, Mu, and the retroelements. J Bacteriol. 1994 Jun;176(11):3257–3268. doi: 10.1128/jb.176.11.3257-3268.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Rådström P., Swedberg G. RSF1010 and a conjugative plasmid contain sulII, one of two known genes for plasmid-borne sulfonamide resistance dihydropteroate synthase. Antimicrob Agents Chemother. 1988 Nov;32(11):1684–1692. doi: 10.1128/aac.32.11.1684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Rådström P., Swedberg G., Sköld O. Genetic analyses of sulfonamide resistance and its dissemination in gram-negative bacteria illustrate new aspects of R plasmid evolution. Antimicrob Agents Chemother. 1991 Sep;35(9):1840–1848. doi: 10.1128/aac.35.9.1840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Schneider P. F., Riley T. V. Susceptibility of urine isolates of Staphylococcus saprophyticus to antimicrobial agents. Pathology. 1991 Apr;23(2):135–138. doi: 10.3109/00313029109060812. [DOI] [PubMed] [Google Scholar]
  120. Sheldon R. Altered dihydrofolate reductase in fol regulatroy mutants of Escherichia coli K12. Mol Gen Genet. 1977 Mar 7;151(2):215–219. doi: 10.1007/BF00338697. [DOI] [PubMed] [Google Scholar]
  121. Simonsen C. C., Chen E. Y., Levinson A. D. Identification of the type I trimethoprim-resistant dihydrofolate reductase specified by the Escherichia coli R-plasmid R483: comparison with procaryotic and eucaryotic dihydrofolate reductases. J Bacteriol. 1983 Sep;155(3):1001–1008. doi: 10.1128/jb.155.3.1001-1008.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Singh K. V., Reves R. R., Pickering L. K., Murray B. E. Identification by DNA sequence analysis of a new plasmid-encoded trimethoprim resistance gene in fecal Escherichia coli isolates from children in day-care centers. Antimicrob Agents Chemother. 1992 Aug;36(8):1720–1726. doi: 10.1128/aac.36.8.1720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Sirotnak F. M., McCuen R. W. Hyperproduction of dihydrofolate reductase in Diplococcus pneumoniae after mutation in the structural gene. Evidence for an effect at the level of transcription. Genetics. 1973 Aug;74(4):543–556. doi: 10.1093/genetics/74.4.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Sköld O. R-factor-mediated resistance to sulfonamides by a plasmid-borne, drug-resistant dihydropteroate synthase. Antimicrob Agents Chemother. 1976 Jan;9(1):49–54. doi: 10.1128/aac.9.1.49. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Sköld O., Widh A. A new dihydrofolate reductase with low trimethoprim sensitivity induced by an R factor mediating high resistance to trimethoprim. J Biol Chem. 1974 Jul 10;249(13):4324–4325. [PubMed] [Google Scholar]
  126. Slock J., Stahly D. P., Han C. Y., Six E. W., Crawford I. P. An apparent Bacillus subtilis folic acid biosynthetic operon containing pab, an amphibolic trpG gene, a third gene required for synthesis of para-aminobenzoic acid, and the dihydropteroate synthase gene. J Bacteriol. 1990 Dec;172(12):7211–7226. doi: 10.1128/jb.172.12.7211-7226.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Smith D. R., Calvo J. M. Nucleotide sequence of dihydrofolate reductase genes from trimethoprim-resistant mutants of Escherichia coli. Evidence that dihydrofolate reductase interacts with another essential gene product. Mol Gen Genet. 1982;187(1):72–78. doi: 10.1007/BF00384386. [DOI] [PubMed] [Google Scholar]
  128. Smith D. R., Calvo J. M. Nucleotide sequence of the E coli gene coding for dihydrofolate reductase. Nucleic Acids Res. 1980 May 24;8(10):2255–2274. doi: 10.1093/nar/8.10.2255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Smith S. L., Stone D., Novak P., Baccanari D. P., Burchall J. J. R plasmid dihydrofolate reductase with subunit structure. J Biol Chem. 1979 Jul 25;254(14):6222–6225. [PubMed] [Google Scholar]
  130. Spach D. H., Opp D. R., Gabre-Kidan T. Bacteremia due to Corynebacterium jeikeium in a patient with AIDS. Rev Infect Dis. 1991 Mar-Apr;13(2):342–343. doi: 10.1093/clinids/13.2.342. [DOI] [PubMed] [Google Scholar]
  131. Spika J. S., Facklam R. R., Plikaytis B. D., Oxtoby M. J. Antimicrobial resistance of Streptococcus pneumoniae in the United States, 1979-1987. The Pneumococcal Surveillance Working Group. J Infect Dis. 1991 Jun;163(6):1273–1278. doi: 10.1093/infdis/163.6.1273. [DOI] [PubMed] [Google Scholar]
  132. Steen R., Sköld O. Plasmid-borne or chromosomally mediated resistance by Tn7 is the most common response to ubiquitous use of trimethoprim. Antimicrob Agents Chemother. 1985 Jun;27(6):933–937. doi: 10.1128/aac.27.6.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. Stokes H. W., Hall R. M. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol Microbiol. 1989 Dec;3(12):1669–1683. doi: 10.1111/j.1365-2958.1989.tb00153.x. [DOI] [PubMed] [Google Scholar]
  134. Stokes H. W., Tomaras C., Parsons Y., Hall R. M. The partial 3'-conserved segment duplications in the integrons In6 from pSa and In7 from pDGO100 have a common origin. Plasmid. 1993 Jul;30(1):39–50. doi: 10.1006/plas.1993.1032. [DOI] [PubMed] [Google Scholar]
  135. Stone D., Smith S. L. The amino acid sequence of the trimethoprim-resistant dihydrofolate reductase specified in Escherichia coli by R-plasmid R67. J Biol Chem. 1979 Nov 10;254(21):10857–10861. [PubMed] [Google Scholar]
  136. Sundström L., Roy P. H., Sköld O. Site-specific insertion of three structural gene cassettes in transposon Tn7. J Bacteriol. 1991 May;173(9):3025–3028. doi: 10.1128/jb.173.9.3025-3028.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Sundström L., Rådström P., Swedberg G., Sköld O. Site-specific recombination promotes linkage between trimethoprim- and sulfonamide resistance genes. Sequence characterization of dhfrV and sulI and a recombination active locus of Tn21. Mol Gen Genet. 1988 Aug;213(2-3):191–201. doi: 10.1007/BF00339581. [DOI] [PubMed] [Google Scholar]
  138. Sundström L., Sköld O. The dhfrI trimethoprim resistance gene of Tn7 can be found at specific sites in other genetic surroundings. Antimicrob Agents Chemother. 1990 Apr;34(4):642–650. doi: 10.1128/aac.34.4.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Sundström L., Swedberg G., Sköld O. Characterization of transposon Tn5086, carrying the site-specifically inserted gene dhfrVII mediating trimethoprim resistance. J Bacteriol. 1993 Mar;175(6):1796–1805. doi: 10.1128/jb.175.6.1796-1805.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Swedberg G., Castensson S., Sköld O. Characterization of mutationally altered dihydropteroate synthase and its ability to form a sulfonamide-containing dihydrofolate analog. J Bacteriol. 1979 Jan;137(1):129–136. doi: 10.1128/jb.137.1.129-136.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Swedberg G., Fermér C., Sköld O. Point mutations in the dihydropteroate synthase gene causing sulfonamide resistance. Adv Exp Med Biol. 1993;338:555–558. doi: 10.1007/978-1-4615-2960-6_113. [DOI] [PubMed] [Google Scholar]
  142. Swedberg G. Organization of two sulfonamide resistance genes on plasmids of gram-negative bacteria. Antimicrob Agents Chemother. 1987 Feb;31(2):306–311. doi: 10.1128/aac.31.2.306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Swedberg G., Sköld O. Characterization of different plasmid-borne dihydropteroate synthases mediating bacterial resistance to sulfonamides. J Bacteriol. 1980 Apr;142(1):1–7. doi: 10.1128/jb.142.1.1-7.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Swedberg G., Sköld O. Plasmid-borne sulfonamide resistance determinants studied by restriction enzyme analysis. J Bacteriol. 1983 Mar;153(3):1228–1237. doi: 10.1128/jb.153.3.1228-1237.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Swift G., McCarthy B. J., Heffron F. DNA sequence of a plasmid-encoded dihydrofolate reductase. Mol Gen Genet. 1981;181(4):441–447. doi: 10.1007/BF00428733. [DOI] [PubMed] [Google Scholar]
  146. Tauxe R. V., Puhr N. D., Wells J. G., Hargrett-Bean N., Blake P. A. Antimicrobial resistance of Shigella isolates in the USA: the importance of international travelers. J Infect Dis. 1990 Nov;162(5):1107–1111. doi: 10.1093/infdis/162.5.1107. [DOI] [PubMed] [Google Scholar]
  147. Then R. L., Angehrn P. Low trimethoprim susceptibility of anaerobic bacteria due to insensitive dihydrofolate reductases. Antimicrob Agents Chemother. 1979 Jan;15(1):1–6. doi: 10.1128/aac.15.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Then R. L., Hermann F. Properties of brodimoprim as an inhibitor of dihydrofolate reductases. Chemotherapy. 1984;30(1):18–25. doi: 10.1159/000238239. [DOI] [PubMed] [Google Scholar]
  149. Then R. L. History and future of antimicrobial diaminopyrimidines. J Chemother. 1993 Dec;5(6):361–368. [PubMed] [Google Scholar]
  150. Then R. L., Kohl I., Burdeska A. Frequency and transferability of trimethoprim and sulfonamide resistance in methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. J Chemother. 1992 Apr;4(2):67–71. doi: 10.1080/1120009x.1992.11739142. [DOI] [PubMed] [Google Scholar]
  151. Then R. L., Riggenbach H. Dihydrofolate reductases in some folate-requiring bacteria with low trimethoprim susceptibility. Antimicrob Agents Chemother. 1978 Jul;14(1):112–117. doi: 10.1128/aac.14.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  152. Thomson C. J., Barg N., Amyes S. G. N-terminal amino acid sequence of the novel type IIIb trimethoprim-resistant plasmid-encoded dihydrofolate reductase from Shigella sonnei. J Gen Microbiol. 1990 Apr;136(4):673–677. doi: 10.1099/00221287-136-4-673. [DOI] [PubMed] [Google Scholar]
  153. Thomson C. J., Young H. K., Amyes S. G. N-terminal amino-acid sequence and subunit structure of the type IV trimethoprim-resistant plasmid-encoded dihydrofolate reductase. J Med Microbiol. 1990 Jul;32(3):153–158. doi: 10.1099/00222615-32-3-153. [DOI] [PubMed] [Google Scholar]
  154. Thomson C. J., Young H. K., Amyes S. G. The role of thymine starvation in the expression of type IV plasmid-encoded trimethoprim-resistant dihydrofolate reductase. J Med Microbiol. 1993 Apr;38(4):250–255. doi: 10.1099/00222615-38-4-250. [DOI] [PubMed] [Google Scholar]
  155. Threlfall E. J., Ward L. R., Rowe B., Raghupathi S., Chandrasekaran V., Vandepitte J., Lemmens P. Widespread occurrence of multiple drug-resistant Salmonella typhi in India. Eur J Clin Microbiol Infect Dis. 1992 Nov;11(11):990–993. doi: 10.1007/BF01967788. [DOI] [PubMed] [Google Scholar]
  156. Urbina R., Prado V., Canelo E. Trimethoprim resistance in enterobacteria isolated in Chile. J Antimicrob Chemother. 1989 Jan;23(1):143–149. doi: 10.1093/jac/23.1.143. [DOI] [PubMed] [Google Scholar]
  157. Volpe F., Ballantine S. P., Delves C. J. The multifunctional folic acid synthesis fas gene of Pneumocystis carinii encodes dihydroneopterin aldolase, hydroxymethyldihydropterin pyrophosphokinase and dihydropteroate synthase. Eur J Biochem. 1993 Sep 1;216(2):449–458. doi: 10.1111/j.1432-1033.1993.tb18163.x. [DOI] [PubMed] [Google Scholar]
  158. Voogd C. E., Schot C. S., van Leeuwen W. J., van Klingeren B. Monitoring of antibiotic resistance in shigellae isolated in The Netherlands 1984-1989. Eur J Clin Microbiol Infect Dis. 1992 Feb;11(2):164–167. doi: 10.1007/BF01967070. [DOI] [PubMed] [Google Scholar]
  159. Walder M. Susceptibility of Campylobacter fetus subsp. jejuni to twenty antimicrobiol agents. Antimicrob Agents Chemother. 1979 Jul;16(1):37–39. doi: 10.1128/aac.16.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Ward L. R., Threlfall E. J., Rowe B. Multiple drug resistance in salmonellae in England and Wales: a comparison between 1981 and 1988. J Clin Pathol. 1990 Jul;43(7):563–566. doi: 10.1136/jcp.43.7.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Wingard E., Shlaes J. H., Mortimer E. A., Shlaes D. M. Colonization and cross-colonization of nursing home patients with trimethoprim-resistant gram-negative bacilli. Clin Infect Dis. 1993 Jan;16(1):75–81. doi: 10.1093/clinids/16.1.75. [DOI] [PubMed] [Google Scholar]
  162. Wise E. M., Jr, Abou-Donia M. M. Sulfonamide resistance mechanism in Escherichia coli: R plasmids can determine sulfonamide-resistant dihydropteroate synthases. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2621–2625. doi: 10.1073/pnas.72.7.2621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Wray C., Beedell Y. E., McLaren I. M. A survey of antimicrobial resistance in Salmonellae isolated from animals in England and Wales during 1984-1987. Br Vet J. 1991 Jul-Aug;147(4):356–369. doi: 10.1016/0007-1935(91)90009-C. [DOI] [PubMed] [Google Scholar]
  164. Wylie B. A., Koornhof H. J. Nucleotide sequence of dihydrofolate reductase type VI. J Med Microbiol. 1991 Oct;35(4):214–218. doi: 10.1099/00222615-35-4-214. [DOI] [PubMed] [Google Scholar]
  165. Wylie B. A., Koornhof H. J. Trimethoprim resistance in gram-negative bacteria isolated in South Africa. J Antimicrob Chemother. 1989 Dec;24(6):973–982. doi: 10.1093/jac/24.6.973. [DOI] [PubMed] [Google Scholar]
  166. Young H. K., Amyes S. G. A new mechanism of plasmid trimethoprim resistance. Characterization of an inducible dihydrofolate reductase. J Biol Chem. 1986 Feb 25;261(6):2503–2505. [PubMed] [Google Scholar]
  167. Young H. K., Amyes S. G. Characterisation of a new transposon-mediated trimethoprim-resistant dihydrofolate reductase. Biochem Pharmacol. 1985 Dec 15;34(24):4334–4337. doi: 10.1016/0006-2952(85)90296-5. [DOI] [PubMed] [Google Scholar]
  168. Young H. K., Qumsieh M. J., McIntosh M. L. Nucleotide sequence and genetic analysis of the type Ib trimethoprim-resistant, Tn4132-encoded dihydrofolate reductase. J Antimicrob Chemother. 1994 Nov;34(5):715–725. doi: 10.1093/jac/34.5.715. [DOI] [PubMed] [Google Scholar]
  169. Zhang Y., Meshnick S. R. Inhibition of Plasmodium falciparum dihydropteroate synthetase and growth in vitro by sulfa drugs. Antimicrob Agents Chemother. 1991 Feb;35(2):267–271. doi: 10.1128/aac.35.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Zolg J. W., Hänggi U. J. Characterization of a R plasmid-associated, trimethoprim-resistant dihydrofolate reductase and determination of the nucleotide sequence of the reductase gene. Nucleic Acids Res. 1981 Feb 11;9(3):697–710. doi: 10.1093/nar/9.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. de Groot R., Campos J., Moseley S. L., Smith A. L. Molecular cloning and mechanism of trimethoprim resistance in Haemophilus influenzae. Antimicrob Agents Chemother. 1988 Apr;32(4):477–484. doi: 10.1128/aac.32.4.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. de Groot R., Chaffin D. O., Kuehn M., Smith A. L. Trimethoprim resistance in Haemophilus influenzae is due to altered dihydrofolate reductase(s). Biochem J. 1991 Mar 15;274(Pt 3):657–662. [PMC free article] [PubMed] [Google Scholar]
  173. de Groot R., Dzoljic-Danilovic G., van Klingeren B., Goessens W. H., Neyens H. J. Antibiotic resistance in Haemophilus influenzae: mechanisms, clinical importance and consequences for therapy. Eur J Pediatr. 1991 Jun;150(8):534–546. doi: 10.1007/BF02072202. [DOI] [PubMed] [Google Scholar]
  174. van Treeck U., Schmidt F., Wiedemann B. Molecular nature of a streptomycin and sulfonamide resistance plasmid (pBP1) prevalent in clinical Escherichia coli strains and integration of an ampicillin resistance transposon (TnA). Antimicrob Agents Chemother. 1981 Mar;19(3):371–380. doi: 10.1128/aac.19.3.371. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES