Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Feb;39(2):301–307. doi: 10.1128/aac.39.2.301

Antimicrobial activities of amphiphilic peptides covalently bonded to a water-insoluble resin.

S L Haynie 1, G A Crum 1, B A Doele 1
PMCID: PMC162531  PMID: 7726486

Abstract

A series of polymer-bound antimicrobial peptides was prepared, and the peptides were tested for their antimicrobial activities. The immobilized peptides were prepared by a strategy that used solid-phase peptide synthesis that linked the carboxy-terminal amino acid with an ethylenediamine-modified polyamide resin (PepsynK). The acid-stable, permanent amide bond between the support and the nascent peptide renders the peptide resistant to cleavage from the support during the final acid-catalyzed deprotection step in the synthesis. Select immobilized peptides containing amino acid sequences that ranged from the naturally occurring magainin to simpler synthetic sequences with idealized secondary structures were excellent antimicrobial agents against several organisms. The immobilized peptides typically reduced the number of viable cells by > or = 5 log units. We show that the reduction in cell numbers cannot be explained by the action of a soluble component. We observed no leached or hydrolyzed peptide from the resin, nor did we observe any antimicrobial activity in soluble extracts from the immobilized peptide. The immobilized peptides were washed and reused for repeated microbial contact and killing. These results suggest that the surface actions by magainins and structurally related antimicrobial peptides are sufficient for their lethal activities.

Full Text

The Full Text of this article is available as a PDF (223.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blondelle S. E., Houghten R. A. Design of model amphipathic peptides having potent antimicrobial activities. Biochemistry. 1992 Dec 22;31(50):12688–12694. doi: 10.1021/bi00165a020. [DOI] [PubMed] [Google Scholar]
  2. Boman H. G. Antibacterial peptides: key components needed in immunity. Cell. 1991 Apr 19;65(2):205–207. doi: 10.1016/0092-8674(91)90154-q. [DOI] [PubMed] [Google Scholar]
  3. Boyce S. T., Supp A. P., Warden G. D., Holder I. A. Attachment of an aminoglycoside, amikacin, to implantable collagen for local delivery in wounds. Antimicrob Agents Chemother. 1993 Sep;37(9):1890–1895. doi: 10.1128/aac.37.9.1890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chavanieu A., Calas B., Grigorescu F. Resin immobilized synthetic peptides used to characterize phosphorylation and antigenic properties of insulin receptor autophosphorylation domains. Int J Pept Protein Res. 1993 Mar;41(3):212–222. doi: 10.1111/j.1399-3011.1993.tb00329.x. [DOI] [PubMed] [Google Scholar]
  5. Christensen B., Fink J., Merrifield R. B., Mauzerall D. Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5072–5076. doi: 10.1073/pnas.85.14.5072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Desai N. P., Hossainy S. F., Hubbell J. A. Surface-immobilized polyethylene oxide for bacterial repellence. Biomaterials. 1992;13(7):417–420. doi: 10.1016/0142-9612(92)90160-p. [DOI] [PubMed] [Google Scholar]
  7. Endo Y., Tani T., Kodama M. Antimicrobial activity of tertiary amine covalently bonded to a polystyrene fiber. Appl Environ Microbiol. 1987 Sep;53(9):2050–2055. doi: 10.1128/aem.53.9.2050-2055.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fields G. B., Noble R. L. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res. 1990 Mar;35(3):161–214. doi: 10.1111/j.1399-3011.1990.tb00939.x. [DOI] [PubMed] [Google Scholar]
  9. Grant E., Jr, Beeler T. J., Taylor K. M., Gable K., Roseman M. A. Mechanism of magainin 2a induced permeabilization of phospholipid vesicles. Biochemistry. 1992 Oct 20;31(41):9912–9918. doi: 10.1021/bi00156a008. [DOI] [PubMed] [Google Scholar]
  10. Gristina A. G. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987 Sep 25;237(4822):1588–1595. doi: 10.1126/science.3629258. [DOI] [PubMed] [Google Scholar]
  11. Jansen B., Peters G., Pulverer G. Mechanisms and clinical relevance of bacterial adhesion to polymers. J Biomater Appl. 1988 Apr;2(4):520–543. doi: 10.1177/088532828700200402. [DOI] [PubMed] [Google Scholar]
  12. Juretić D., Chen H. C., Brown J. H., Morell J. L., Hendler R. W., Westerhoff H. V. Magainin 2 amide and analogues. Antimicrobial activity, membrane depolarization and susceptibility to proteolysis. FEBS Lett. 1989 Jun 5;249(2):219–223. doi: 10.1016/0014-5793(89)80627-1. [DOI] [PubMed] [Google Scholar]
  13. Kadurugamuwa J. L., Clarke A. J., Beveridge T. J. Surface action of gentamicin on Pseudomonas aeruginosa. J Bacteriol. 1993 Sep;175(18):5798–5805. doi: 10.1128/jb.175.18.5798-5805.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kamal G. D., Pfaller M. A., Rempe L. E., Jebson P. J. Reduced intravascular catheter infection by antibiotic bonding. A prospective, randomized, controlled trial. JAMA. 1991 May 8;265(18):2364–2368. [PubMed] [Google Scholar]
  15. Macias E. A., Rana F., Blazyk J., Modrzakowski M. C. Bactericidal activity of magainin 2: use of lipopolysaccharide mutants. Can J Microbiol. 1990 Aug;36(8):582–584. doi: 10.1139/m90-102. [DOI] [PubMed] [Google Scholar]
  16. Martinek K., Mozhaev V. V. Immobilization of enzymes: an approach to fundamental studies in biochemistry. Adv Enzymol Relat Areas Mol Biol. 1985;57:179–249. doi: 10.1002/9780470123034.ch3. [DOI] [PubMed] [Google Scholar]
  17. Merrifield B. Solid phase synthesis. Science. 1986 Apr 18;232(4748):341–347. doi: 10.1126/science.3961484. [DOI] [PubMed] [Google Scholar]
  18. Sawyer J. G., Martin N. L., Hancock R. E. Interaction of macrophage cationic proteins with the outer membrane of Pseudomonas aeruginosa. Infect Immun. 1988 Mar;56(3):693–698. doi: 10.1128/iai.56.3.693-698.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tebbs S. E., Elliott T. S. A novel antimicrobial central venous catheter impregnated with benzalkonium chloride. J Antimicrob Chemother. 1993 Feb;31(2):261–271. doi: 10.1093/jac/31.2.261. [DOI] [PubMed] [Google Scholar]
  20. Urrutia R., Cruciani R. A., Barker J. L., Kachar B. Spontaneous polymerization of the antibiotic peptide magainin 2. FEBS Lett. 1989 Apr 10;247(1):17–21. doi: 10.1016/0014-5793(89)81230-x. [DOI] [PubMed] [Google Scholar]
  21. Venter J. C. Immobilized and insolubilized drugs, hormones, and neurotransmitters: properties, mechanisms of action and applications. Pharmacol Rev. 1982 Jun;34(2):153–187. [PubMed] [Google Scholar]
  22. Westerhoff H. V., Hendler R. W., Zasloff M., Juretić D. Interactions between a new class of eukaryotic antimicrobial agents and isolated rat liver mitochondria. Biochim Biophys Acta. 1989 Aug 3;975(3):361–369. doi: 10.1016/s0005-2728(89)80344-5. [DOI] [PubMed] [Google Scholar]
  23. Westerhoff H. V., Juretić D., Hendler R. W., Zasloff M. Magainins and the disruption of membrane-linked free-energy transduction. Proc Natl Acad Sci U S A. 1989 Sep;86(17):6597–6601. doi: 10.1073/pnas.86.17.6597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Zasloff M., Martin B., Chen H. C. Antimicrobial activity of synthetic magainin peptides and several analogues. Proc Natl Acad Sci U S A. 1988 Feb;85(3):910–913. doi: 10.1073/pnas.85.3.910. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES