Abstract
The intrapulmonary pharmacokinetics of orally administered clarithromycin (500 mg every 12 h for five doses) or erythromycin (250 mg every 6 h for nine doses) were studied in 32 healthy adult volunteers. Four of the subjects, two in the clarithromycin group and two in the erythromycin group, were smokers. Bronchoscopy, bronchoalveolar lavage, and venipuncture were performed at 4, 8, 12, 24, and 48 h after administration of the last dose of clarithromycin and at 4, 8, and 12 h after administration of the last dose of erythromycin. Clarithromycin was measured by high-performance liquid chromatography, and erythromycin was measured by a microbiological assay. No systemic sedation was used. There were no major adverse events. The concentrations of antibiotics in epithelial lining fluid (ELF) were calculated by the urea dilution method. The volumes (mean +/- standard deviation) of ELF were 1.9 +/- 2.0 ml and 1.5 +/- 0.7 ml in the clarithromycin and erythromycin groups, respectively (P > 0.05). There was no effect of smoking on the amount of bronchoalveolar lavage fluid recovered, the volume of ELF, or the number of erythrocytes present in the lavage fluid (P > 0.05 for all comparisons). The total number of alveolar cells, however, was almost threefold greater in the smokers versus that in the nonsmokers (P < 0.05). Clarithromycin was concentrated in ELF (range, 72.1 +/- 73.0 micrograms/ml at 8 h to 11.9 +/- 3.6 micrograms/ml at 24 h) and alveolar cells (range, 505.8 +/- 293.1 micrograms/ml at 4 h to 17.0 +/- 34.0 micrograms/ml at 48 h). 14-(R)-Hydroxyclarithromycin was also present in these compartments, but at lower concentrations than the parent compound. The concentrations of erythromycin in ELF and alveolar cells were low at 4, 8, and 12 h following the last dose of drug (range, 0 to 0.8 +/- microgram/ml in ELF and 0 to 0.8 +/- 1.3 microgram/ml in alveolar cells). The clinical significance of any antibiotic concentrations in these compartments in unclear. The data suggest, and we conclude, that clarithromycin may be a useful drug in the treatment of pulmonary infections, particularly those caused by intracellular organisms.
Full Text
The Full Text of this article is available as a PDF (205.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson R., Joone G., van Rensburg C. E. An in-vitro evaluation of the cellular uptake and intraphagocytic bioactivity of clarithromycin (A-56268, TE-031), a new macrolide antimicrobial agent. J Antimicrob Chemother. 1988 Dec;22(6):923–933. doi: 10.1093/jac/22.6.923. [DOI] [PubMed] [Google Scholar]
- Araujo F. G., Prokocimer P., Lin T., Remington J. S. Activity of clarithromycin alone or in combination with other drugs for treatment of murine toxoplasmosis. Antimicrob Agents Chemother. 1992 Nov;36(11):2454–2457. doi: 10.1128/aac.36.11.2454. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldwin D. R., Honeybourne D., Wise R. Pulmonary disposition of antimicrobial agents: in vivo observations and clinical relevance. Antimicrob Agents Chemother. 1992 Jun;36(6):1176–1180. doi: 10.1128/aac.36.6.1176. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldwin D. R., Honeybourne D., Wise R. Pulmonary disposition of antimicrobial agents: methodological considerations. Antimicrob Agents Chemother. 1992 Jun;36(6):1171–1175. doi: 10.1128/aac.36.6.1171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baldwin D. R., Wise R., Andrews J. M., Ashby J. P., Honeybourne D. Azithromycin concentrations at the sites of pulmonary infection. Eur Respir J. 1990 Sep;3(8):886–890. [PubMed] [Google Scholar]
- Bonnet M., Van der Auwera P. In vitro and in vivo intraleukocytic accumulation of azithromycin (CP-62, 993) and its influence on ex vivo leukocyte chemiluminescence. Antimicrob Agents Chemother. 1992 Jun;36(6):1302–1309. doi: 10.1128/aac.36.6.1302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown B. A., Wallace R. J., Jr, Onyi G. O. Activities of clarithromycin against eight slowly growing species of nontuberculous mycobacteria, determined by using a broth microdilution MIC system. Antimicrob Agents Chemother. 1992 Sep;36(9):1987–1990. doi: 10.1128/aac.36.9.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carré P., Piva F., Aerts C., Voisin C., Wallaert B. Etude de la pénétration in vivo de l'érythromycine dans les macrophages alvéolaires. Rev Mal Respir. 1990;7(2):119–122. [PubMed] [Google Scholar]
- Chen S. C., Paul M. L., Gilbert G. L. Susceptibility of Legionella species to antimicrobial agents. Pathology. 1993 Apr;25(2):180–183. doi: 10.3109/00313029309084795. [DOI] [PubMed] [Google Scholar]
- Chu S. Y., Sennello L. T., Bunnell S. T., Varga L. L., Wilson D. S., Sonders R. C. Pharmacokinetics of clarithromycin, a new macrolide, after single ascending oral doses. Antimicrob Agents Chemother. 1992 Nov;36(11):2447–2453. doi: 10.1128/aac.36.11.2447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chu S. Y., Sennello L. T., Sonders R. C. Simultaneous determination of clarithromycin and 14(R)-hydroxyclarithromycin in plasma and urine using high-performance liquid chromatography with electrochemical detection. J Chromatogr. 1991 Nov 15;571(1-2):199–208. doi: 10.1016/0378-4347(91)80446-j. [DOI] [PubMed] [Google Scholar]
- Chu S. Y., Wilson D. S., Guay D. R., Craft C. Clarithromycin pharmacokinetics in healthy young and elderly volunteers. J Clin Pharmacol. 1992 Nov;32(11):1045–1049. doi: 10.1002/j.1552-4604.1992.tb03809.x. [DOI] [PubMed] [Google Scholar]
- Cohen Y., Perronne C., Truffot-Pernot C., Grosset J., Vilde J. L., Pocidalo J. J. Activities of WIN-57273, minocycline, clarithromycin, and 14-hydroxy-clarithromycin against Mycobacterium avium complex in human macrophages. Antimicrob Agents Chemother. 1992 Oct;36(10):2104–2107. doi: 10.1128/aac.36.10.2104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davey P. G. The pharmacokinetics of clarithromycin and its 14-OH metabolite. J Hosp Infect. 1991 Sep;19 (Suppl A):29–37. doi: 10.1016/0195-6701(91)90215-t. [DOI] [PubMed] [Google Scholar]
- Ettensohn D. B., Jankowski M. J., Duncan P. G., Lalor P. A. Bronchoalveolar lavage in the normal volunteer subject. I. Technical aspects and intersubject variability. Chest. 1988 Aug;94(2):275–280. doi: 10.1378/chest.94.2.275. [DOI] [PubMed] [Google Scholar]
- Ettensohn D. B., Jankowski M. J., Redondo A. A., Duncan P. G. Bronchoalveolar lavage in the normal volunteer subject. 2. Safety and results of repeated BAL, and use in the assessment of intrasubject variability. Chest. 1988 Aug;94(2):281–285. doi: 10.1378/chest.94.2.281. [DOI] [PubMed] [Google Scholar]
- Fernandes P. B., Bailer R., Swanson R., Hanson C. W., McDonald E., Ramer N., Hardy D., Shipkowitz N., Bower R. R., Gade E. In vitro and in vivo evaluation of A-56268 (TE-031), a new macrolide. Antimicrob Agents Chemother. 1986 Dec;30(6):865–873. doi: 10.1128/aac.30.6.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fish D. N., Gotfried M. H., Danziger L. H., Rodvold K. A. Penetration of clarithromycin into lung tissues from patients undergoing lung resection. Antimicrob Agents Chemother. 1994 Apr;38(4):876–878. doi: 10.1128/aac.38.4.876. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gladue R. P., Bright G. M., Isaacson R. E., Newborg M. F. In vitro and in vivo uptake of azithromycin (CP-62,993) by phagocytic cells: possible mechanism of delivery and release at sites of infection. Antimicrob Agents Chemother. 1989 Mar;33(3):277–282. doi: 10.1128/aac.33.3.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorzynski E. A., Gutman S. I., Allen W. Comparative antimycobacterial activities of difloxacin, temafloxacin, enoxacin, pefloxacin, reference fluoroquinolones, and a new macrolide, clarithromycin. Antimicrob Agents Chemother. 1989 Apr;33(4):591–592. doi: 10.1128/aac.33.4.591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammerschlag M. R., Qumei K. K., Roblin P. M. In vitro activities of azithromycin, clarithromycin, L-ofloxacin, and other antibiotics against Chlamydia pneumoniae. Antimicrob Agents Chemother. 1992 Jul;36(7):1573–1574. doi: 10.1128/aac.36.7.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hubbard R. B., Mathur R. M., MacFarlane J. T. Severe community-acquired legionella pneumonia: treatment, complications and outcome. Q J Med. 1993 May;86(5):327–332. [PubMed] [Google Scholar]
- Ji B., Jamet P., Perani E. G., Bobin P., Grosset J. H. Powerful bactericidal activities of clarithromycin and minocycline against Mycobacterium leprae in lepromatous leprosy. J Infect Dis. 1993 Jul;168(1):188–190. doi: 10.1093/infdis/168.1.188. [DOI] [PubMed] [Google Scholar]
- Kavi J., Webberley J. M., Andrews J. M., Wise R. A comparison of the pharmacokinetics and tissue penetration of spiramycin and erythromycin. J Antimicrob Chemother. 1988 Jul;22 (Suppl B):105–110. doi: 10.1093/jac/22.supplement_b.105. [DOI] [PubMed] [Google Scholar]
- Kirby B. D., Harris A. A. Nosocomial Legionnaires' disease. Semin Respir Infect. 1987 Dec;2(4):255–261. [PubMed] [Google Scholar]
- Klemens S. P., DeStefano M. S., Cynamon M. H. Activity of clarithromycin against Mycobacterium avium complex infection in beige mice. Antimicrob Agents Chemother. 1992 Nov;36(11):2413–2417. doi: 10.1128/aac.36.11.2413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Limper A. H., Specks U., Brutinel W. M., Martin W. J., 2nd, Rohrbach M. S. Interlobar variation in the recovery of bronchoalveolar lavage fluid, cell populations, and angiotensin-converting enzyme in normal volunteers. J Lab Clin Med. 1993 Jun;121(6):785–791. [PubMed] [Google Scholar]
- Loza E., Martínez Beltrán J., Baquero F., León A., Cantón R., Garijo B. Comparative in vitro activity of clarithromycin. Spanish Collaborative Group. Eur J Clin Microbiol Infect Dis. 1992 Sep;11(9):856–866. doi: 10.1007/BF01960892. [DOI] [PubMed] [Google Scholar]
- Mazzei T., Mini E., Novelli A., Periti P. Chemistry and mode of action of macrolides. J Antimicrob Chemother. 1993 Mar;31 (Suppl 100):1–9. doi: 10.1093/jac/31.suppl_c.1. [DOI] [PubMed] [Google Scholar]
- Merchant R. K., Schwartz D. A., Helmers R. A., Dayton C. S., Hunninghake G. W. Bronchoalveolar lavage cellularity. The distribution in normal volunteers. Am Rev Respir Dis. 1992 Aug;146(2):448–453. doi: 10.1164/ajrccm/146.2.448. [DOI] [PubMed] [Google Scholar]
- Rastogi N., Goh K. S., Labrousse V. Activity of clarithromycin compared with those of other drugs against Mycobacterium paratuberculosis and further enhancement of its extracellular and intracellular activities by ethambutol. Antimicrob Agents Chemother. 1992 Dec;36(12):2843–2846. doi: 10.1128/aac.36.12.2843. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rennard S. I., Basset G., Lecossier D., O'Donnell K. M., Pinkston P., Martin P. G., Crystal R. G. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol (1985) 1986 Feb;60(2):532–538. doi: 10.1152/jappl.1986.60.2.532. [DOI] [PubMed] [Google Scholar]
- Ritchie D. J., Hopefl A. W., Milligan T. W., Byrne J. E., Maddux M. S. In vitro activity of clarithromycin, cefprozil, and other common oral antimicrobial agents against gram-positive and gram-negative pathogens. Clin Ther. 1993 Jan-Feb;15(1):107–113. [PubMed] [Google Scholar]
- TALKE H., SCHUBERT G. E. ENZYMATISCHE HARNSTOFFBESTIMMUNG IN BLUT UND SERUM IM OPTISCHEN TEST NACH WARBURG. Klin Wochenschr. 1965 Feb 1;43:174–175. doi: 10.1007/BF01484513. [DOI] [PubMed] [Google Scholar]
- Willcox M., Kervitsky A., Watters L. C., King T. E., Jr Quantification of cells recovered by bronchoalveolar lavage. Comparison of cytocentrifuge preparations with the filter method. Am Rev Respir Dis. 1988 Jul;138(1):74–80. doi: 10.1164/ajrccm/138.1.74. [DOI] [PubMed] [Google Scholar]
- Williams J. D., Maskell J. P., Shain H., Chrysos G., Sefton A. M., Fraser H. Y., Hardie J. M. Comparative in-vitro activity of azithromycin, macrolides (erythromycin, clarithromycin and spiramycin) and streptogramin RP 59500 against oral organisms. J Antimicrob Chemother. 1992 Jul;30(1):27–37. doi: 10.1093/jac/30.1.27. [DOI] [PubMed] [Google Scholar]