Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Feb;39(2):346–349. doi: 10.1128/aac.39.2.346

Distribution of cphA or related carbapenemase-encoding genes and production of carbapenemase activity in members of the genus Aeromonas.

G M Rossolini 1, A Zanchi 1, A Chiesurin 1, G Amicosante 1, G Satta 1, P Guglielmetti 1
PMCID: PMC162540  PMID: 7726495

Abstract

The prevalence of the cphA gene or related carbapenemase-encoding genes was investigated in 114 Aeromonas strains belonging to the six species of major clinical interest. A species-related distribution of cphA-related sequences was observed. Similar sequences were found in A. hydrophila, A. veronii bv. sobria, A. veronii bv. veronii, and A. jandaei, but not in A. caviae, A. trota, or A. schubertii. However, a single A. caviae strain (of 62 tested) was found carrying cphA-related sequences, suggesting the possibility of the horizontal transfer of this gene to species which normally do not carry it. Production of carbapenemase activity was detectable in 83% of the hybridization-positive strains but in none of the hybridization-negative ones. When it was present, carbapenemase activity was always inhibitable by EDTA. Either carbapenemase-producing or not, Aeromonas strains appeared to be susceptible to imipenem when in vitro susceptibility testing was performed with inocula of conventional size (10(5) CFU), for which MICs were always < or = 1 microgram/ml. With a larger inoculum (10(8) CFU), the MICs for carbapenemase-negative strains always remained < or = 1 microgram/ml, while those for carbapenemase-producing strains were always > or = 4 micrograms/ml, being usually higher than the breakpoint for susceptibility. The present results indicate that the production of metallocarbapenemase activity, apparently encoded by cphA homologs, is widespread among some of the Aeromonas species of clinical interest (A. hydrophila, A. veronii bv. sobria, A. veronii bv. veronii, and A. jandaei) and that imipenem MICs for carbapenemase-producing strains are subjected to a relevant inoculum size effect.

Full Text

The Full Text of this article is available as a PDF (192.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakken J. S., Sanders C. C., Clark R. B., Hori M. Beta-lactam resistance in Aeromonas spp. caused by inducible beta-lactamases active against penicillins, cephalosporins, and carbapenems. Antimicrob Agents Chemother. 1988 Sep;32(9):1314–1319. doi: 10.1128/aac.32.9.1314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carnahan A. M., Behram S., Joseph S. W. Aerokey II: a flexible key for identifying clinical Aeromonas species. J Clin Microbiol. 1991 Dec;29(12):2843–2849. doi: 10.1128/jcm.29.12.2843-2849.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clarke A. M., Zemcov S. J. In-vitro activity of meropenem against clinical isolates obtained in Canada. J Antimicrob Chemother. 1989 Sep;24 (Suppl A):47–55. doi: 10.1093/jac/24.suppl_a.47. [DOI] [PubMed] [Google Scholar]
  4. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  5. Felici A., Amicosante G. Kinetic analysis of extension of substrate specificity with Xanthomonas maltophilia, Aeromonas hydrophila, and Bacillus cereus metallo-beta-lactamases. Antimicrob Agents Chemother. 1995 Jan;39(1):192–199. doi: 10.1128/aac.39.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Felici A., Amicosante G., Oratore A., Strom R., Ledent P., Joris B., Fanuel L., Frère J. M. An overview of the kinetic parameters of class B beta-lactamases. Biochem J. 1993 Apr 1;291(Pt 1):151–155. doi: 10.1042/bj2910151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hussain M., Carlino A., Madonna M. J., Lampen J. O. Cloning and sequencing of the metallothioprotein beta-lactamase II gene of Bacillus cereus 569/H in Escherichia coli. J Bacteriol. 1985 Oct;164(1):223–229. doi: 10.1128/jb.164.1.223-229.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Iaconis J. P., Sanders C. C. Purification and characterization of inducible beta-lactamases in Aeromonas spp. Antimicrob Agents Chemother. 1990 Jan;34(1):44–51. doi: 10.1128/aac.34.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Janda J. M. Recent advances in the study of the taxonomy, pathogenicity, and infectious syndromes associated with the genus Aeromonas. Clin Microbiol Rev. 1991 Oct;4(4):397–410. doi: 10.1128/cmr.4.4.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jorgensen J. H., Maher L. A., Howell A. W. Activity of meropenem against antibiotic-resistant or infrequently encountered gram-negative bacilli. Antimicrob Agents Chemother. 1991 Nov;35(11):2410–2414. doi: 10.1128/aac.35.11.2410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Livermore D. M. Carbapenemases. J Antimicrob Chemother. 1992 Jun;29(6):609–613. doi: 10.1093/jac/29.6.609. [DOI] [PubMed] [Google Scholar]
  12. Martinez-Murcia A. J., Benlloch S., Collins M. D. Phylogenetic interrelationships of members of the genera Aeromonas and Plesiomonas as determined by 16S ribosomal DNA sequencing: lack of congruence with results of DNA-DNA hybridizations. Int J Syst Bacteriol. 1992 Jul;42(3):412–421. doi: 10.1099/00207713-42-3-412. [DOI] [PubMed] [Google Scholar]
  13. Massidda O., Rossolini G. M., Satta G. The Aeromonas hydrophila cphA gene: molecular heterogeneity among class B metallo-beta-lactamases. J Bacteriol. 1991 Aug;173(15):4611–4617. doi: 10.1128/jb.173.15.4611-4617.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Neu H. C., Novelli A., Chin N. X. In vitro activity and beta-lactamase stability of a new carbapenem, SM-7338. Antimicrob Agents Chemother. 1989 Jul;33(7):1009–1018. doi: 10.1128/aac.33.7.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Osano E., Arakawa Y., Wacharotayankun R., Ohta M., Horii T., Ito H., Yoshimura F., Kato N. Molecular characterization of an enterobacterial metallo beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother. 1994 Jan;38(1):71–78. doi: 10.1128/aac.38.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Payne D. J. Metallo-beta-lactamases--a new therapeutic challenge. J Med Microbiol. 1993 Aug;39(2):93–99. doi: 10.1099/00222615-39-2-93. [DOI] [PubMed] [Google Scholar]
  17. Saino Y., Kobayashi F., Inoue M., Mitsuhashi S. Purification and properties of inducible penicillin beta-lactamase isolated from Pseudomonas maltophilia. Antimicrob Agents Chemother. 1982 Oct;22(4):564–570. doi: 10.1128/aac.22.4.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sanders C. C., Sanders W. E., Jr, Thomson K. S., Iaconis J. P. Meropenem: activity against resistant gram-negative bacteria and interactions with beta-lactamases. J Antimicrob Chemother. 1989 Sep;24 (Suppl A):187–196. doi: 10.1093/jac/24.suppl_a.187. [DOI] [PubMed] [Google Scholar]
  19. Segatore B., Massidda O., Satta G., Setacci D., Amicosante G. High specificity of cphA-encoded metallo-beta-lactamase from Aeromonas hydrophila AE036 for carbapenems and its contribution to beta-lactam resistance. Antimicrob Agents Chemother. 1993 Jun;37(6):1324–1328. doi: 10.1128/aac.37.6.1324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Shannon K., King A., Phillips I. Beta-lactamases with high activity against imipenem and Sch 34343 from Aeromonas hydrophila. J Antimicrob Chemother. 1986 Jan;17(1):45–50. doi: 10.1093/jac/17.1.45. [DOI] [PubMed] [Google Scholar]
  21. Thompson J. S., Malamy M. H. Sequencing the gene for an imipenem-cefoxitin-hydrolyzing enzyme (CfiA) from Bacteroides fragilis TAL2480 reveals strong similarity between CfiA and Bacillus cereus beta-lactamase II. J Bacteriol. 1990 May;172(5):2584–2593. doi: 10.1128/jb.172.5.2584-2593.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES