Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Mar;39(3):586–592. doi: 10.1128/AAC.39.3.586

Identification of the aminocatechol A-3253 as an in vitro poison of DNA topoisomerase I from Candida albicans.

J Fostel 1, D Montgomery 1
PMCID: PMC162588  PMID: 7793856

Abstract

The aminocatechol A-3253 is active against several pathogenic fungi, including Candida albicans, Cryptococcus albidus, and Aspergillus niger. A-3253 interferes with both the in vitro biosynthesis of (1,3)-beta-glucan and the activity of topoisomerases I isolated from Candida spp. It is likely that one or more of the enzymes involved in glucan biosynthesis rather than topoisomerase I is the primary intracellular target of A-3253, since a strain of Saccharomyces cerevisiae lacking topoisomerase I is as susceptible to A-3253 as cells containing wild-type levels of topoisomerase I. However, the interaction of A-3253 with topoisomerase I in vitro is of interest since the Candida topoisomerase is more susceptible to A-3253 than is the topoisomerase I isolated from human HeLa cells. A-3253 is both a reversible inhibitor of topoisomerase I catalysis and a reversible poison of topoisomerase I, and in both reactions the fungal topoisomerase I is more susceptible than the human topoisomerase I to A-3253. In contrast, an earlier study found that the human topoisomerase I is more susceptible than the fungal topoisomerase to camptothecin (J. M. Fostel, D. A. Montgomery, and L. L. Shen, Antimicrob. Agents Chemother. 36:2131-2138, 1992). Taken together with the response to camptothecin, the greater susceptibility of the Candida topoisomerase I to A-3253 suggests that there are structural differences between the human and fungal type I topoisomerases which can likely be exploited to allow for the development of antifungal agents which act against the fungal topoisomerase and which have minimal activity against the human enzyme.

Full Text

The Full Text of this article is available as a PDF (327.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baguley B. C., Römmele G., Gruner J., Wehrli W. Papulacandin B: an inhibitor of glucan synthesis in yeast spheroplasts. Eur J Biochem. 1979 Jul;97(2):345–351. doi: 10.1111/j.1432-1033.1979.tb13120.x. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Cabib E., Kang M. S., Au-Young J. Chitin synthase from Saccharomyces cerevisiae. Methods Enzymol. 1987;138:643–649. doi: 10.1016/0076-6879(87)38058-9. [DOI] [PubMed] [Google Scholar]
  4. Chen A. Y., Liu L. F. DNA topoisomerases: essential enzymes and lethal targets. Annu Rev Pharmacol Toxicol. 1994;34:191–218. doi: 10.1146/annurev.pa.34.040194.001203. [DOI] [PubMed] [Google Scholar]
  5. Dykstra C. C., McClernon D. R., Elwell L. P., Tidwell R. R. Selective inhibition of topoisomerases from Pneumocystis carinii compared with that of topoisomerases from mammalian cells. Antimicrob Agents Chemother. 1994 Sep;38(9):1890–1898. doi: 10.1128/aac.38.9.1890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eng W. K., Faucette L., Johnson R. K., Sternglanz R. Evidence that DNA topoisomerase I is necessary for the cytotoxic effects of camptothecin. Mol Pharmacol. 1988 Dec;34(6):755–760. [PubMed] [Google Scholar]
  7. Figgitt D. P., Denyer S. P., Dewick P. M., Jackson D. E., Williams P. Topoisomerase II: a potential target for novel antifungal agents. Biochem Biophys Res Commun. 1989 Apr 14;160(1):257–262. doi: 10.1016/0006-291x(89)91649-5. [DOI] [PubMed] [Google Scholar]
  8. Fostel J. M., Montgomery D. A., Shen L. L. Characterization of DNA topoisomerase I from Candida albicans as a target for drug discovery. Antimicrob Agents Chemother. 1992 Oct;36(10):2131–2138. doi: 10.1128/aac.36.10.2131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frost D. J., Brandt K., Capobianco J., Goldman R. Characterization of (1,3)-beta-glucan synthase in Candida albicans: microsomal assay from the yeast or mycelial morphological forms and a permeabilized whole-cell assay. Microbiology. 1994 Sep;140(Pt 9):2239–2246. doi: 10.1099/13500872-140-9-2239. [DOI] [PubMed] [Google Scholar]
  10. Georgopapadakou N. H., Dix B. A., Smith S. A., Freudenberger J., Funke P. T. Effect of antifungal agents on lipid biosynthesis and membrane integrity in Candida albicans. Antimicrob Agents Chemother. 1987 Jan;31(1):46–51. doi: 10.1128/aac.31.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Goto T., Wang J. C. Cloning of yeast TOP1, the gene encoding DNA topoisomerase I, and construction of mutants defective in both DNA topoisomerase I and DNA topoisomerase II. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7178–7182. doi: 10.1073/pnas.82.21.7178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hsiang Y. H., Hertzberg R., Hecht S., Liu L. F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem. 1985 Nov 25;260(27):14873–14878. [PubMed] [Google Scholar]
  13. Kang M. S., Szaniszlo P. J., Notario V., Cabib E. The effect of papulacandin B on (1----3)-beta-D-glucan synthetases. A possible relationship between inhibition and enzyme conformation. Carbohydr Res. 1986 Jun 1;149(1):13–21. doi: 10.1016/s0008-6215(00)90365-3. [DOI] [PubMed] [Google Scholar]
  14. Ko Y. T., Frost D. J., Ho C. T., Ludescher R. D., Wasserman B. P. Inhibition of yeast (1,3)-beta-glucan synthase by phospholipase A2 and its reaction products. Biochim Biophys Acta. 1994 Jul 13;1193(1):31–40. doi: 10.1016/0005-2736(94)90329-8. [DOI] [PubMed] [Google Scholar]
  15. Liu L. F. DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem. 1989;58:351–375. doi: 10.1146/annurev.bi.58.070189.002031. [DOI] [PubMed] [Google Scholar]
  16. Liu L. F., Davis J. L., Calendar R. Novel topologically knotted DNA from bacteriophage P4 capsids: studies with DNA topoisomerases. Nucleic Acids Res. 1981 Aug 25;9(16):3979–3989. doi: 10.1093/nar/9.16.3979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lynn R. M., Bjornsti M. A., Caron P. R., Wang J. C. Peptide sequencing and site-directed mutagenesis identify tyrosine-727 as the active site tyrosine of Saccharomyces cerevisiae DNA topoisomerase I. Proc Natl Acad Sci U S A. 1989 May;86(10):3559–3563. doi: 10.1073/pnas.86.10.3559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nitiss J. L., Liu Y. X., Harbury P., Jannatipour M., Wasserman R., Wang J. C. Amsacrine and etoposide hypersensitivity of yeast cells overexpressing DNA topoisomerase II. Cancer Res. 1992 Aug 15;52(16):4467–4472. [PubMed] [Google Scholar]
  19. Nitiss J., Wang J. C. DNA topoisomerase-targeting antitumor drugs can be studied in yeast. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7501–7505. doi: 10.1073/pnas.85.20.7501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Osheroff N., Corbett A. H., Robinson M. J. Mechanism of action of topoisomerase II-targeted antineoplastic drugs. Adv Pharmacol. 1994;29B:105–126. doi: 10.1016/s1054-3589(08)61134-5. [DOI] [PubMed] [Google Scholar]
  21. Osheroff N., Zechiedrich E. L., Gale K. C. Catalytic function of DNA topoisomerase II. Bioessays. 1991 Jun;13(6):269–273. doi: 10.1002/bies.950130603. [DOI] [PubMed] [Google Scholar]
  22. Pommier Y., Tanizawa A., Kohn K. W. Mechanisms of topoisomerase I inhibition by anticancer drugs. Adv Pharmacol. 1994;29B:73–92. doi: 10.1016/s1054-3589(08)61132-1. [DOI] [PubMed] [Google Scholar]
  23. Sawistowska-Schröder E. T., Kerridge D., Perry H. Echinocandin inhibition of 1,3-beta-D-glucan synthase from Candida albicans. FEBS Lett. 1984 Jul 23;173(1):134–138. doi: 10.1016/0014-5793(84)81032-7. [DOI] [PubMed] [Google Scholar]
  24. Selitrennikoff C. P. Use of a temperature-sensitive, protoplast-forming Neurospora crassa strain for the detection of antifungal antibiotics. Antimicrob Agents Chemother. 1983 May;23(5):757–765. doi: 10.1128/aac.23.5.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shen L. L., Baranowski J., Fostel J., Montgomery D. A., Lartey P. A. DNA topoisomerases from pathogenic fungi: targets for the discovery of antifungal drugs. Antimicrob Agents Chemother. 1992 Dec;36(12):2778–2784. doi: 10.1128/aac.36.12.2778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sherman F. Getting started with yeast. Methods Enzymol. 1991;194:3–21. doi: 10.1016/0076-6879(91)94004-v. [DOI] [PubMed] [Google Scholar]
  27. Smith P. J. DNA topoisomerase dysfunction: a new goal for antitumor chemotherapy. Bioessays. 1990 Apr;12(4):167–172. doi: 10.1002/bies.950120405. [DOI] [PubMed] [Google Scholar]
  28. Taft C. S., Stark T., Selitrennikoff C. P. Cilofungin (LY121019) inhibits Candida albicans (1-3)-beta-D-glucan synthase activity. Antimicrob Agents Chemother. 1988 Dec;32(12):1901–1903. doi: 10.1128/aac.32.12.1901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Thrash C., Bankier A. T., Barrell B. G., Sternglanz R. Cloning, characterization, and sequence of the yeast DNA topoisomerase I gene. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4374–4378. doi: 10.1073/pnas.82.13.4374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wang J. C., Caron P. R., Kim R. A. The role of DNA topoisomerases in recombination and genome stability: a double-edged sword? Cell. 1990 Aug 10;62(3):403–406. doi: 10.1016/0092-8674(90)90002-v. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES