Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1995 Mar;39(3):593–597. doi: 10.1128/AAC.39.3.593

Quinolone antibiotics in therapy of experimental pneumococcal meningitis in rabbits.

R Nau 1, T Schmidt 1, K Kaye 1, J L Froula 1, M G Täuber 1
PMCID: PMC162589  PMID: 7793857

Abstract

Using a rabbit model of pneumococcal meningitis, we compared the pharmacokinetics and bactericidal activities in cerebrospinal fluid (CSF) of older (ciprofloxacin, ofloxacin) and newer (levofloxacin, temafloxacin, CP-116,517, and Win 57273) quinolones with those of the beta-lactam ceftriaxone. All quinolones penetrated into the inflamed CSF better than ceftriaxone, and the speed of entry into CSF was closely related to their degrees of lipophilicity. At a dose of 10 mg/kg.h, which in the case of the quinolones already in use in clinical practice produced concentrations attainable in the sera and CSF of humans, ciprofloxacin had no antipneumococcal activity (delta log10 CFU/ml.h, +0.20 +/- 0.14). Ofloxacin (delta log10 CFU/ml.h, -0.13 +/- 0.12), temafloxacin (delta log10 CFU/ml.h, -0.19 +/- 0.18), and levofloxacin (delta log10 CFU/ml.h, -0.24 +/- 0.16) showed slow bactericidal activity (not significantly different from each other), while CP-116,517 (delta log10 CFU/ml.h, -0.59 +/- 0.21) and Win 57273 (delta log10 CFU/ml.h, -0.72 +/- 0.20) showed increased bactericidal activities in CSF that was comparable to that of ceftriaxone at 10 mg/kg.h (delta log10 CFU/ml.h, -0.80 +/- 0.17). These improved in vivo activities of the newer quinolones reflected their increased in vitro activities. All quinolones and ceftriaxone showed positive correlations between bactericidal rates in CSF and concentrations in CSF relative to their MBCs. Only when this ratio exceeded 10 did the antibiotics exhibit rapid bactericidal activities in CSF. In conclusion, in experimental pneumococcal meningitis the activities of new quinolones with improved antipneumococcal activities were comparable to that of ceftriaxone.

Full Text

The Full Text of this article is available as a PDF (196.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradley J. S., Connor J. D. Ceftriaxone failure in meningitis caused by Streptococcus pneumoniae with reduced susceptibility to beta-lactam antibiotics. Pediatr Infect Dis J. 1991 Nov;10(11):871–873. [PubMed] [Google Scholar]
  2. Dacey R. G., Sande M. A. Effect of probenecid on cerebrospinal fluid concentrations of penicillin and cephalosporin derivatives. Antimicrob Agents Chemother. 1974 Oct;6(4):437–441. doi: 10.1128/aac.6.4.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Drusano G. L., Johnson D. E., Rosen M., Standiford H. C. Pharmacodynamics of a fluoroquinolone antimicrobial agent in a neutropenic rat model of Pseudomonas sepsis. Antimicrob Agents Chemother. 1993 Mar;37(3):483–490. doi: 10.1128/aac.37.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eliopoulos G. M., Klimm K., Eliopoulos C. T., Ferraro M. J., Moellering R. C., Jr In vitro activity of CP-99,219, a new fluoroquinolone, against clinical isolates of gram-positive bacteria. Antimicrob Agents Chemother. 1993 Feb;37(2):366–370. doi: 10.1128/aac.37.2.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Figueiredo A. M., Connor J. D., Severin A., Vaz Pato M. V., Tomasz A. A pneumococcal clinical isolate with high-level resistance to cefotaxime and ceftriaxone. Antimicrob Agents Chemother. 1992 Apr;36(4):886–889. doi: 10.1128/aac.36.4.886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Friedland I. R., Paris M., Ehrett S., Hickey S., Olsen K., McCracken G. H., Jr Evaluation of antimicrobial regimens for treatment of experimental penicillin- and cephalosporin-resistant pneumococcal meningitis. Antimicrob Agents Chemother. 1993 Aug;37(8):1630–1636. doi: 10.1128/aac.37.8.1630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fu K. P., Lafredo S. C., Foleno B., Isaacson D. M., Barrett J. F., Tobia A. J., Rosenthale M. E. In vitro and in vivo antibacterial activities of levofloxacin (l-ofloxacin), an optically active ofloxacin. Antimicrob Agents Chemother. 1992 Apr;36(4):860–866. doi: 10.1128/aac.36.4.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Granneman G. R., Carpentier P., Morrison P. J., Pernet A. G. Pharmacokinetics of temafloxacin in humans after single oral doses. Antimicrob Agents Chemother. 1991 Mar;35(3):436–441. doi: 10.1128/aac.35.3.436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hackbarth C. J., Chambers H. F., Stella F., Shibl A. M., Sande M. A. Ciprofloxacin in experimental Pseudomonas aeruginosa meningitis in rabbits. J Antimicrob Chemother. 1986 Nov;18 (Suppl 500):65–69. doi: 10.1093/jac/18.supplement_d.65. [DOI] [PubMed] [Google Scholar]
  10. Isaacs D., Slack M. P., Wilkinson A. R., Westwood A. W. Successful treatment of Pseudomonas ventriculitis with ciprofloxacin. J Antimicrob Chemother. 1986 Apr;17(4):535–538. doi: 10.1093/jac/17.4.535. [DOI] [PubMed] [Google Scholar]
  11. Klugman K. P. Pneumococcal resistance to antibiotics. Clin Microbiol Rev. 1990 Apr;3(2):171–196. doi: 10.1128/cmr.3.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lee B. L., Padula A. M., Kimbrough R. C., Jones S. R., Chaisson R. E., Mills J., Sande M. A. Infectious complications with respiratory pathogens despite ciprofloxacin therapy. N Engl J Med. 1991 Aug 15;325(7):520–521. doi: 10.1056/nejm199108153250719. [DOI] [PubMed] [Google Scholar]
  13. Marton A., Gulyas M., Munoz R., Tomasz A. Extremely high incidence of antibiotic resistance in clinical isolates of Streptococcus pneumoniae in Hungary. J Infect Dis. 1991 Mar;163(3):542–548. doi: 10.1093/infdis/163.3.542. [DOI] [PubMed] [Google Scholar]
  14. Meulemans A., Vicart P., Mohler J., Vulpillat M. Determination of antibiotic lipophilicity with a micromethod: application to brain permeability in man and rats. Chemotherapy. 1988;34(2):90–95. doi: 10.1159/000238553. [DOI] [PubMed] [Google Scholar]
  15. Michéa-Hamzehpour M., Furet Y. X., Pechère J. C. Role of protein D2 and lipopolysaccharide in diffusion of quinolones through the outer membrane of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1991 Oct;35(10):2091–2097. doi: 10.1128/aac.35.10.2091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Millar M. R., Bransby-Zachary M. A., Tompkins D. S., Hawkey P. M., Myles Gibson R. Ciprofloxacin for Pseudomonas aeruginosa meningitis. Lancet. 1986 Jun 7;1(8493):1325–1325. doi: 10.1016/s0140-6736(86)91242-0. [DOI] [PubMed] [Google Scholar]
  17. Nau R., Kaye K., Sachdeva M., Sande E. R., Täuber M. G. Rifampin for therapy of experimental pneumococcal meningitis in rabbits. Antimicrob Agents Chemother. 1994 May;38(5):1186–1189. doi: 10.1128/aac.38.5.1186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nau R., Sörgel F., Prange H. W. Lipophilicity at pH 7.4 and molecular size govern the entry of the free serum fraction of drugs into the cerebrospinal fluid in humans with uninflamed meninges. J Neurol Sci. 1994 Mar;122(1):61–65. doi: 10.1016/0022-510x(94)90052-3. [DOI] [PubMed] [Google Scholar]
  19. Sande M. A. Factors influencing the penetration and activity of antibiotics in experimental meningitis. J Infect. 1981 Mar;3(1 Suppl):33–38. doi: 10.1016/s0163-4453(81)80006-0. [DOI] [PubMed] [Google Scholar]
  20. Sande M. A., Sherertz R. J., Zak O., Strausbaugh L. J. Cephalosporin antibiotics in therapy of experimental Streptococcus pneumoniae and Haemophilus influenzae meningitis in rabbits. J Infect Dis. 1978 May;137 (Suppl):S161–S168. doi: 10.1093/infdis/137.supplement.s161. [DOI] [PubMed] [Google Scholar]
  21. Scheld W. M. Quinolone therapy for infections of the central nervous system. Rev Infect Dis. 1989 Jul-Aug;11 (Suppl 5):S1194–S1202. doi: 10.1093/clinids/11.supplement_5.s1194. [DOI] [PubMed] [Google Scholar]
  22. Shibl A. M., Hackbarth C. J., Sande M. A. Evaluation of pefloxacin in experimental Escherichia coli meningitis. Antimicrob Agents Chemother. 1986 Mar;29(3):409–411. doi: 10.1128/aac.29.3.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith J. T. The mode of action of 4-quinolones and possible mechanisms of resistance. J Antimicrob Chemother. 1986 Nov;18 (Suppl 500):21–29. doi: 10.1093/jac/18.supplement_d.21. [DOI] [PubMed] [Google Scholar]
  24. Spangler S. K., Jacobs M. R., Appelbaum P. C. Comparative activity of the new fluoroquinolone Bay y3118 against 177 penicillin susceptible and resistant pneumococci. Eur J Clin Microbiol Infect Dis. 1993 Dec;12(12):965–967. doi: 10.1007/BF01992176. [DOI] [PubMed] [Google Scholar]
  25. Spangler S. K., Jacobs M. R., Appelbaum P. C. Susceptibilities of penicillin-susceptible and -resistant strains of Streptococcus pneumoniae to RP 59500, vancomycin, erythromycin, PD 131628, sparfloxacin, temafloxacin, win 57273, ofloxacin, and ciprofloxacin. Antimicrob Agents Chemother. 1992 Apr;36(4):856–859. doi: 10.1128/aac.36.4.856. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Täuber M. G., Doroshow C. A., Hackbarth C. J., Rusnak M. G., Drake T. A., Sande M. A. Antibacterial activity of beta-lactam antibiotics in experimental meningitis due to Streptococcus pneumoniae. J Infect Dis. 1984 Apr;149(4):568–574. doi: 10.1093/infdis/149.4.568. [DOI] [PubMed] [Google Scholar]
  27. Täuber M. G., Hackbarth C. J., Scott K. G., Rusnak M. G., Sande M. A. New cephalosporins cefotaxime, cefpimizole, BMY 28142, and HR 810 in experimental pneumococcal meningitis in rabbits. Antimicrob Agents Chemother. 1985 Mar;27(3):340–342. doi: 10.1128/aac.27.3.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Viladrich P. F., Gudiol F., Liñares J., Rufi G., Ariza J., Pallares R. Characteristics and antibiotic therapy of adult meningitis due to penicillin-resistant pneumococci. Am J Med. 1988 May;84(5):839–846. doi: 10.1016/0002-9343(88)90061-7. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES